IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of Potential Alcohol and pH Adjustment on Polyphenols and Sensory Characteristics of Red Wines Produced at Different Harvest Time Points

Influence of Potential Alcohol and pH Adjustment on Polyphenols and Sensory Characteristics of Red Wines Produced at Different Harvest Time Points

Abstract

Wine quality is influenced by grape maturity, typically monitored by measuring sugar content and acidity. However, environmental factors such as extreme weather or fungal infections can force winemakers to harvest earlier than desired. This study investigated whether sugar and pH adjustment used to increase potential alcohol and reduce the perception of acidity, can also compensate for immaturity in terms of phenolic extractability, composition, and related sensory attributes. Since anthocyanin and sugar accumulation profiles do not necessarily run parallel during grape ripening, it was important to study several harvest time points.
Wines were made from Pinot noir and Cabernet Sauvignon grapes harvested in 2019 at three different stages of grape maturity, in the range of 18-24 Brix. After bottling, phenolic analysis (HPLC-DAD/FD, LC-QToF-MS and spectrophotometry) and sensory evaluation revealed that adjustment of early-harvest must to pH 3.3 and 24.5 Brix enhanced the extraction of seed-associated phenolics such as monomeric catechins, and resulted in higher ratings of a green, herbaceous and ethereal aroma, rough astringency and a harsh mouthfeel. Adjustment did not significantly increase concentrations of skin-associated phenolics such as anthocyanins and polymeric pigments, and could therefore not compensate for a lack of color intensity. Wines made from the late-harvest grapes had significantly higher concentrations of anthocyanins and polymeric pigments and lower concentrations of monomeric catechins and procyanidins. This resulted in wines with a full body and high ratings in color intensity, dark fruit aroma, and smooth astringency. The data suggests that anthocyanins and polymeric pigments can be used as markers for grape maturity. Potential alcohol and pH adjustment could not change the phenolic composition and sensory perception of an early-harvest wine to mimic those of a late-harvest wine.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Article

Authors

Feifel Sandra1, Weilack Ingrid2, Wegmann-Herr Pascal3, Weber Fabian2 and Durner Dominik1

1Weincampus Neustadt, Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
2University of Bonn (Germany)
3Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Evolution of the amino acids content through grape ripening: Effect of foliar application of methyl jasmonate with or without urea

The parameters that determine the grape quality, and therefore the optimal harvest time, suffer variations during berry ripening, related to climate change, with the widely known problem of the gap between technological and phenolic maturities. However, there are few studies about its incidence on grape nitrogen composition. For this reason, the use of an elicitor, methyl jasmonate (MeJ), alone or with urea, is proposed as a tool to reduce climatic decoupling, allowing to establish the harvest time in order to achieve the optimum grape quality. The aim was to study the effect of MeJ and MeJ+Urea foliar applications on the evolution of Tempranillo amino acids content throughout the grape maturation. Three treatments were foliarly applied, at veraison and 7 days later: control (water), MeJ (10 mM) and MeJ+Urea (10 mM+6 kg N/ha). Grape samples were taken at five stages of maturation: day before the first and second applications, 15 days after the second application (pre-harvest), harvest day, and 15 days after harvest (post-harvest). The amino acids analysis of the samples was carried out by HPLC. Results showed that the evolution of amino acids was similar regardless of the treatment; however, foliar applications influenced the nitrogen compounds content, i.e., there was no qualitative effect but quantitative one. Most of the amino acids reached their maximum concentration in pre-harvest, being higher in grapes from the treatments than in the control. In general, no differences in grape amino acids content were observed between MeJ and MeJ+Urea treatments. Foliar applications with MeJ and MeJ+Urea enhanced the grape amino acids content, without affecting their profile, helping to optimize their quality and allowing to establish a more complete grape ripening standard. Therefore, MeJ and MeJ+Urea foliar applications can be a simple agronomic practice, which has shown promising results in order to enhance the grape quality.

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).

The use of remote sensing in South-African terroir research

The diversity of soil types in the Western Cape of South Africa leads to high levels of within-vineyard variability. Multispectral remote sensing has received a lot of attention recently in the South-African wine industry in an attempt to identify and deal with this variability.

Caratterizzazione vitivinicola delle “Terre del Piacenziano” ricomprese nella zona D.O.C. “colli piacentini” attraverso l’analisi sensoriale dei vini prodotti

I territori della Riserva Geologica del Piacenziano sono parte del pedeappennino piacentino e sono noti per essere la culla del Pliocene, quel periodo di storia della Terra compreso tra 5.3 e 1.8 milioni di anni fa. Gli strati argillosi e sabbiosi riccamente fossiliferi qui presenti sono da sempre oggetto di studi geo-paleontologici tant’è che il Pliocene medio (3.6-2.6 milioni di anni fa) è internazionalmente noto come Piacenziano. Le analisi sensoriali strutturate dei vini qui prodotti hanno evidenziato, soprattutto per il vino Monterosso, le positive peculiarità dei loro caratteri sensoriali e descritto gli scostamenti significativi del loro profilo sensoriale rispetto agli altri vini presi a riferimento.

Aroma accumulation trends during berry development and selection of grape aroma candidate genes suitable for functional characterization

Grape flavour management in the vineyard requires knowledge of the derivation of individual flavour and aroma characteristics and the effects that different concentrations and interactions between these compounds have on flavour potential.