IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

Abstract

In 2020 one out of  eight wine bottles were filled with a flavoured wine-based beverage.
Installed sealings absorb aroma compounds and release them during subsequent bottling of regular wines. This unintentional carry-over bears the risk to violate the legal ban of any
aromatization of regular wine.  Due to the highly seasonal bottling of aromatized wine-based beverages such as mulled wine, an installation of a second bottling line  reserved for aromatized beverages only is too expensive. Thus we investigated the absorption and desorption process during bottling and cleaning in order to minimize aroma carry-over by improved cleaning efficacy.  If cleaning obeys good manufacturing practice (GMP) and traces of aroma compounds in the subsequently filled wine show no sensory significance, this unintended aroma carry-over will be considered as technically unavoidable and has no legal consequences anymore. Based on a novel direct analysis of aroma compounds within the sealing polymers, which we exposed to aromatized wine and cleaning agents in a model
system, a GMP cleaning sequence removed only 11–62% of the seven absorbed marker
aroma compounds such as γ-decalactone, α-ionon or eugenol.1 Among the cleaning factors, high temperature of 85 °C revealed the largest cleaning efficacy, while chemical additives such as citric acid, caustic soda or ozone exhibited only minor impact. A total removal of absorbed aroma compounds from sealing however was not achieved, making a later release into subsequent wines possible. To study the requested absence of sensory significance, odor detection thresholds of seven aroma compounds commonly used for aromatization were determined in water, model wine and regular white wine. Applying the odor activity concept to traces of aroma compounds detected in the subsequent bottled wines allowed us to determine unequivocally their sensory impact. 

Studying uptake, cleaning and further release in two industry scale bottling lines we could confirm the uptake of marker compounds into built-in sealing during the filling of mulled or aromatized wines for four days. GMP cleaning only reduced small amounts of absorbed aroma compounds from the sealing, which was also the case for the subsequent bottling of regular wines. Sensory evaluation of the wine before and after bottling by a 2-out-of-5 test could not detect the bottled wine. In fact, concentrations of respective aroma compounds remained below the analytical limit of detection or way below their respective sensory
thresholds. In conclusion, despite of migration of aroma compounds into the sealing of a bottling line, execution of GMP cleaning and dilution effects in the subsequently filled wine prevented any aroma carry-over of sensory significance. Thus, a potential analytical determination of aroma traces would not lead to legal prosecution.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gottmann Jörg1, Vestner Jochen1 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

aroma carry-over, odor detection threshold, odor activity value, cleaning, aromatized wines, sensory evaluation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Wine industry, digital transformation, and sustainability: a systematic literature 

This paper aims to (i) identify the state of the art regarding digital transformation in the transition to sustainability in the wine industry, (ii) analyze the adoption of digital technologies at different stages of the winemaking process and their contribution to the triple bottom line of sustainability, and (iii) present a research agenda that facilitates the development of the field, providing contributions to both literature and managerial practice.

Cascading effects of spring weather conditions into grape berry ripening

The effects of climate change on viticulture are complex due to interactions among factors and cascading effects.

Pests and biodiversity management on a climate change scenario: A practical case

The weather anomalies comparing the 1971-2000 time frame and the last years has showned a dramatic scenario when, in some months, average temperature in above 3ºC and the reduction in precipitation in more than 30%.

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world.