IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Abstract

Background: Elaborating red-wines from grape cultivars with different polyphenolic profiles could improve wine color and its phenolic-dependent characteristics. Aim: the aim of this research was to study the effect of elaborating blend wines from grape-cultivars with different phenolic profiles on, copigmentation, promotion of stable pigments, color, and contents of phenolic compounds. The time of blending, before-fermentation blends of musts (BFB) or after-fermentation blends of wines (AFB) was also evaluated. Material and Methods: During 2020 vintage, blend wines were made from grapes (m/m) or wines (v/v), in proportion of 1/2-1/2 of Tannat-Marselan, Tannat-Syrah, Syrah-Marselan, and 1/3-1/3-1/3 of Tannat-Syrah-Marselan. The varietal wines (VW) were also elaborated, all by triplicate at experimental scale. Spectrophotometric analysis (including total phenols, wine color, and antioxidant capacity measurements) were performed right-after wine stabilization, and a year later together with LC-DAD-MS/MS determinations (analysis of pigments, flavonols, flavan-3-ols, hydroxycinnamic acids and stilbenes). Wines and samples of the grape skin and seed used in the experiments were also analyzed. Results: Tannat wines had pigments with low proportion of malvidin and acylated derivatives, high contents of hydroxycinnamic acids, flavan-3-ols, and relative low contents of flavonols (mainly based on myricetin). Syrah wines had high proportion of malvidin and the highest of acylated derivatives, low contents of hydroxycinnamic acids, medium concentrations of flavan-3-ols, and high contents of flavonols, particularly based on quercetin and isorhamnetin. Marselan, showed high contents of anthocyanins, with the highest proportion of malvidin, high concentrations of hydroxycinnamic acids, flavan-3-ol and flavonols, with high proportion of syringetin. Thus, each cultivar expressed its characteristic phenolic profile. Copigmentation was significantly higher in Marselan than in Syrah, and in Syrah than in Tannat wines, but the blended wines that included Tannat and Marselan had the highest proportion of copigmentation, possibly due to a better relationship between pigments and copigments like flavonols. The BFB wines had higher and more bluish color than AFB wines, mainly due to BFB wines had significant lower pH that AFB (e.g. Marselan_Tannat CI 13.93 and 12.77 in BFB and AFB respectively). The BFB wines had higher color due to polymers than BAF and VW wines. Tri-varietal blends presented a more bluish hue than bi-varietal blends, maybe because of the better balance among pigments and compigments found in the formers. The wines made BFB had higher content of phenols in the wines after a year than the expected considering the proportion of each cultivar in the blend. Blend red-wines made considering grape-cultivar phenolic characteristics may improve wine quality.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Favre Guzmán1, Gómez-Alonso Sergio2, Pérez-Navarro José2, Morales Belén1, Piccardo Diego1 and González-Neves Gustavo1

1Facultad de Agronomía, Universidad de la República (Udelar)
2Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha

Contact the author

Keywords

Tanna, Marselan, Syrah, Blend wines

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

The influence of vine row position in terraced Merlot vineyards on water deficit and polyphenols – case study in the Vipava Valley, Slovenia

A study was conducted in the Vipava Valley (Slovenia) to understand the effects of positioning rows of Merlot (Vitis vinifera L.) vines on terraces on plant available water, yield, and grape composition

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.