IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Abstract

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

Recent research conducted by our team has been focused on alternative technology towards sustainable ageing of WS resorting to wooden staves combined with micro-oxygenation (MOX).2,3 In the Project CENTRO-04-3928-FEDER-000001, the same wine distillate was aged for 18 months in 1000 L stainless steel tanks with wood staves inside (Limousin oak or chestnut) and MOX (flow rate 2 mL/L/month), and in 250 L barrels made of the same kinds of wood, in duplicate. Despite the promising results achieved, showing faster ageing and the production of high quality aged WSs resulting from the alternative technology compared to those resulting from the traditional one, it is imperative to assess their quality during the storage in bottle to fully validate the new technology. Therefore, the second phase of the investigation is currently made under the Project CENTRO-04-3928-FEDER-000028, studying the chemistry underlying the storage in bottle in order to understand if the features imparted by the ageing technology are retained or if they do not persist. The present work is focused on the behaviour of phenolic compounds of the aged WSs during this stage. For this purpose, the eight aged WSs (from the four modalities: chestnut barrels, Limousin oak barrels, stainless steel tanks with chestnut wood staves and MOX, and stainless steel tanks with Limousin oak wood staves and MOX) were bottled on the same day in 750 mL amber glass bottles (two bottles per modality). The cork stopper and the bottleneck were sealed with parafilm to prevent evaporation. The bottles were stored in the cellar of INIAV-Dois Portos. Sampling was carried out in the beginning and after 12 months of storage, and the phenolic compounds (gallic, syringic, ferulic and ellagic acids, vanillin, syringaldehyde, coniferaldehyde, sinapaldehyde, umbelliferone and scopoletin) were analysed by a HPLC method developed and validated in our laboratory.4

The ANOVA results revealed that most of the compounds’ contents did not change significantly after 12 months of storage in bottle. In addition, the phenolic differences between the WSs resulting from the four ageing modalities remained, except for ferulic acid. Therefore, in these experimental conditions, this stage allowed preserving the phenolic composition imparted to the WS by the alternative ageing technology.

References

1 Canas S., 2017. Phenolic composition and related properties of aged wine spirits: Influence of barrel characteristics. A review. Beverages, 3, 55-76.
2 Canas S., Anjos O., Caldeira I., Belchior A.P., 2019. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: alternative technology using micro-oxygenation vs traditional technology. LWT – Food Science and Technology, 111, 260-269.
3 Granja-Soares J., Roque R., Cabrita M.J., Anjos O., Belchior A.P., Caldeira I., Canas S., 2020. Effect of innovative technology using staves and micro-oxygenation on the sensory and odorant profile of aged wine spirit. Food Chem., 333, 127450.
4 Canas S., Belchior A.P., Spranger M.I., Bruno de Sousa R., 2003. High-performance liquid chromatography method for analysis of phenolic acids, phenolic aldehydes and furanic derivatives in brandies. Development and validation. J. Sep. Sci., 26, 496–502.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Canas Sara1, Lourenço Sílvia1, Anjos Ofélia2 and Caldeira Ilda1

1Instituto Nacional de Investigação Agrária e Veterinária – Pólo de Dois Portos
2 Instituto Politécnico de Castelo Branco 

Contact the author

Keywords

wine spirit, storage in bottle, ageing technology, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Use of artificial intelligence for the prediction of microbial diseases of grapevine and optimisation of fungicide application

Plasmopara viticola, the causal agent of downy mildew (DM), and Uncinula necator, the causal agent of powdery mildew (PM), are two of the main phytopathogenic microorganisms causing major economic losses in the primary sector, especially in the wine sector, by wilting bunches and leaves with a consequent decrease in the photosynthetic rate of the plant and in the annual yield. Currently, the most widespread methods for planning spraying are based on the 3-10 rule, which states that the first application should take place when: (i) the air temperature is greater than 10°C; (ii) shoots are equal or greater than 10 cm; and (iii) a minimum of 10 mm rainfall within 24–48 hours has occurred, or at the beginning of the bud break with periodic applications according to the manufacturer’s instructions.

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards.

Legal and economic evolution of the Japanese wine industry in the 21st century

Historically bounded by strict regulations with a focus on taxation since the 19th century, the japanese wine industry stands at a crossroads in the 21st century, necessitated by alignment with international standards and opening towards global markets.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

Port wine region settling

Cet exposé présente une caractérisation générale de la Région Délimitée du Douro (RDD), productrice des appellations Porto (vins généreux), et Douro pour des vins de qualité VQPRD.