IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

Abstract

Aim: The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact. 

Materials and methods: For that purpose, a red wine of Cabernet Sauvignon from 2016 vintage was aged for 12 months in new barrels of these three oak species. A similar wine from the following vintage (2017) was aged in the same barrels for knowing how the use of the barrels affects their capacity to release volatile substances and its organoleptic impact. The volatile compounds released from the oak wood were analyzed by GC/MS according with the procedure described by Ibarz et al. (2006). The ellagitannins were analyzed by HPLC-DADESI-MS/MS according with the method reported by Navarro et al. (2017). Dscriptive sensory analysis was performed by a trained panel. This panel was made up of 16 students (10 males and 6 females) aged between 21 and 25, who had been training together for 3 years while studying sensory analysis as part of the enology degree.

Results and discussion: As expected, the wine aged in new Q. alba barrels presented the highest concentration in β-methyl-γ-octalactones and the lowest concentration of ellagitannins whereas the wine aged in new Q. petraea barrels presented much higher concentration of ellagitannins and much lower concentration of β-methyl-γ-octalactones. In contrast, the wine aged in new Q. pyrenaica barrels presented a concentration of ellagitannins even higher than the wine aged in new Q. petraea barrels and an intermediate concentration of β-methyl-γ-octalactones. No significant differences were found in vanillin and other volatile substances. Finally, ellagitannins and all volatile substances concentration decreased drastically the wines aged in all the one year used barrels. In general, the results of sensory analysis showed that wines aged in Q. pyrenaica barrels were somewhat less appreciated than those aged in barrels of Q, petraea but better than those aged in barrels of Q. alba.

Conclusions: The main conclusion is that Q. pyrenaica has a great interest as a source of wood for cooperage.

References

Ibarz M., Ferreira V., Hernández-Orte P., Loscos N. and Cacho J., 2006. Optimization and evaluation of a procedure for the gas chromatographic-mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavors precursors extracted from grapes. Journal of Chromatography A, 1116, 217–229. doi:10.1016/j.chroma.2006.03.020
Navarro M., Kontoudakis N., Canals J.M., García- Romero E., Gómez-Alonso S., Zamora F., and Hermosín-Gutíerrez I., 2017. Improved method for the extraction and chromatographic analysis on fused-core columns of occurring ellagitannins in oak-aged wine. Food Chemistry, 226, 23–31. doi:10.1016/j. foodchem.2017.01.043

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Zamora Fernando1, Gombau Jordi1, Cabanillas Pedro1, Mena Adela2, Gómez-Alonso Sergio3, García-Romero Esteban2 and Canals Joan Miquel1

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili 
2Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Tomelloso, Ciudad Real, Spain 
3Universidad de Castilla-La Mancha, Instituto Regional de Investigación Científica Aplicada. Universidad de Castilla-La Mancha 

Contact the author

Keywords

Oak; Q. pyrenaica; Barrels; Volatile substances; Ellagitannins

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Wine lees are the sediment that settles at the bottom of wine barrels, tanks, or bottles during the winemaking process and represent the second most significant by-product of wineries.

Vitamins in musts : an unexplored field

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigation

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.