IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Chemical and sensory characterization of Xinomavro PDO red wine

Chemical and sensory characterization of Xinomavro PDO red wine

Abstract

Aroma is considered one of the most important factors in determining the quality and character of wine. The relationship between wine character and its volatile composition is recognized by several researchers worldwide. Since these compounds influence the sensory perceptions of consumers, both volatile composition and sensory properties are essential in determining wine aroma characteristics.

In this study, the volatile composition with its corresponding aroma descriptors was used to identify the main aroma compounds of the variety Xinomavro. Xinomavro (Vitis Vinifera L.) is one of the noble red grape varieties of Northern Greece and is present in many PDO red wines. In the experimental winery of our laboratory, a total of 6 different red wines were produced according to the same vinification protocol.

Aroma compounds of wine samples were extracted by Liquid-Liquid extraction, concentrated with SAFE method and analysed by Gas Chromatography-Mass Spectrometry (GC-MS) /Olfactometry to identify the key odorants of the variety. Olfactory analysis identified 30 aroma-active compounds, of which, ethyl hexanoate had the highest modified detection frequency (MF%).

25 of the key-volatile compounds were quantified using GC-MS, SIM mode, followed by the determination of Odor Activity Values (OAVs). A trained panel evaluated the wines using sensory descriptive analysis, based on a total of 11 aroma attributes. According to the data obtained, a complex aroma profile rich in alcohols, ethyl esters, acetate esters and fatty acids, with a contribution of terpenes and volatile phenols was recorded. Ethyl octanoate, ethyl hexanoate, isoamyl acetate, β-damascenone and eugenol were the aroma compounds with OAVs > 10. All these compounds are associated with fruity and  spicy aromas. Following this pattern, the aroma of the six wines was mainly characterized by three typical sensory terms, red fruits, which include berry fruits, strawberry and cherry, spices, which include pepper and clover and tomato paste.

This study provides a useful approach on the chemo-sensory fingerprint of Xinomavro PDO wines. It may be further used to determine the aroma “key” compounds responsible for Xinomavro aroma characters, as they derived from the sensory evaluation. This final result will be a great tool to improve the Xinomavro wines using winemaking methods to enhance the distinctive aromatic profile of this specific variety.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Goulioti Elli1, Kanapitsas Alexandros1, Lola Despina1, Bauer Andrea2, Jeffery David3 and Kotseridis Yorgos1

1Laboratory of Enology and Alcoholic Drinks, Agricultural University of Athens
2Faculty Life Science, Department of Food Science and Nutrition, Hamburg University of Applied Sciences
3Department of Wine Science, University of Adelaide

Contact the author

Keywords

aroma, GC-MS, OAV, sensory analysis, Xinomavro

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

Vitis vinifera Manseng noir is an alternative red variety for low alcohol wines of strong structure and soft tannins

In 2019, we have planted the red variety Manseng Noir, as it has been shown that it is the only sister of the Tannat grape. Tannat was introduced to Uruguay in 1870 from the south-western regions of France.

Evaluation of Saccharomyces cerevisiae strains from honey by-products by their performance as starters in the wine industry

AIM: Recent studies on yeast ecology of non-oenological niches have highlighted the ability of some Saccharomyces cerevisiae yeasts to ferment grape must [1]

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.

Monitoring the establishment of a synthetic microbial community with a potential biocontrol activity against grapevine downy mildew using a microfluidic qPCR chip

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is responsible for significant economic losses each year and for a large proportion of the fungicides used in viticulture.