IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Flavor Enhancement Of Neutral White Wines By Mango Peel Products

Flavor Enhancement Of Neutral White Wines By Mango Peel Products

Abstract

Varietal flavor is commonly known as the aromatic character of a wine in which the aroma of a particular grape variety predominates. However, not all varieties present particularly pronounced aromas. Therefore, different methods are constantly sought to enhance the aroma of wines with neutral aromatic characteristics, such as the use of glycosidases (1), certain yeast strains (2) or maceration with different agricultural products. In this work, aiming to improve the sensory profile together with the diversification of this product, white wines, derived from a neutral grape variety, were elaborated with the addition of mango peel by-products. This by-product was chosen because of its greatly esteemed tropical scents (3). Three different samples were performed regarding the mango peels application: 7 days co-fermentation (MCF), 7 days maceration post-fermentation (MPF) and no mango peel added, considered as control (C). A comprehensive analysis of the volatile profile, both qualitative and quantitative, was carried out by SPE extraction followed by GC-MS. Wines were also tasted by a panel of experts in order to evaluate the sensory attributes. Conventional analsysis including color parameters were also executed. Preliminary results have shown that MCF and PCF, exhibited an overall terpene compounds increase in which significant amounts of characteristic mango volatile compounds such as 3-carene or p-cymene were found, which evoque floral-resinous aromatic scents. On the other hand, less appreciated compounds such as 1-octen-3-ol (musty odour) were also found in larger quantities in both samples treated with mango peels.  The sensory analysis outcomes showed that, while some unattractive volatiles compounds were identified in the samples treated with mango peels, those were not found in any case during the tasting evaluation. In addition, judges detected exclusive attributes in MCF and PCF samples, defined as compote and apricot notes. Furthermore, these exclusive desirable attributes remained much longer in the mouth in the sample of wines that had undergone post-fermentation maceration (PCF).In conclusion, together with the rest of data analysed, a 7-day post-fermentation maceration with dried mango skins is proposed as a natural cheap and simple aromatisation method for white wines.

References

(1) Vázquez, L. C., Pérez-Coello, M. S., & Cabezudo, M. D. (2002). Effects of enzyme treatment and skin extraction on varietal volatiles in Spanish wines made from Chardonnay, Muscat, Airén, and Macabeo grapes. Analytica Chimica Acta, 458(1), 39-44.
(2) Sabel, A., Martens, S., Petri, A., König, H., & Claus, H. (2014). Wickerhamomyces anomalus AS1: a new strain with potential to improve wine aroma. Annals of Microbiology, 64(2), 483-491.
(3) Pino, J. A., & Mesa, J. (2006). Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour and fragrance journal, 21(2), 207-213.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Oliver-Simancas Rodrigo1, Labrador-Fernández L.1,  Díaz-Maroto M. C.1, Pérez-Coello1 and Alañón-Pardo1

1Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA)

Contact the author

Keywords

Wine styles, Neutral wines, Maceration, Diversification, Agricultural peels.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of climate and soil on phenology and ripening of Vitis vinifera cv Touriga acional in the Dão region

“Terroir” has been acknowledged as an important factor in wine quality and style. It can be defined as an interaction between climate, soil, vine (cultivar, rootstock) and human factors such as viticultural and enological techniques. Soil and climate are the two components of the “Terroir” with an important role on the vine development and berries ripening. The present study is focused on the effects of the weather conditions and the soil characteristics on the phenological and berries ripening dynamics of the “Touriga Nacional” in Dão region.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

Enological potential of red grapes: cultivars and geographic origin of vineyards

The study of technologic and phenolic maturation is very efficient to determinate quality potential of red grapes cultivars and clones under different maturity levels or geographic origins