IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 How different SO2 doses impact amino acid and volatile profile of white wines

How different SO2 doses impact amino acid and volatile profile of white wines

Abstract

Sulphur dioxide (SO2) is a well-established preservative in the wine industry. Its ability to act in different stages of the process as an antioxidant and an antiseptic as main characteristics makes it versatile. However, the need for its reduction or even its replacement has been increasing by the regulatory authorities as well as by the final consumer. To understand the impact of SO2 during ageing on volatile organic compounds (VOCs) and amino acids (AAs) profiles, two white wines (one varietal and one blend) were aged under the same conditions, in the presence of different doses of SO2. After fermentation (t=0), 0, 30, 60, 90 and 120 mg/L of SO2 were applied, wines were kept over lees for 3 months (t=3), then were bottled after 3 (t=6) and 9 (t=12) months. VOCs were analysed by HS-SPME-GC/MS for all samples and the AAs were analyzed by HPLC-DAD for t=0 and t=3 wines. A total of 83 VOCs were tentatively identified, 70 in monovarietal wine and 73 in the blend wine. The main chemical groups present are esters, alcohols, carboxylic acids, aldehydes and 12 miscellaneous compounds. When a Principal Component Analysis (PCA) was performed on VOCs semi-quantification of each wine it was observed that the 1st and 2nd PCs explained between 64% and 76 % of the overall system variance, for monovarietal and blend wines respectively. In monovarietal wine was attained lower distinctions for different SO2 applied doses on samples with 3 and 12 months. However, for 6 months of evolution samples are well separated. In this case, both principal components seem to influence the distribution of samples with a similar weight. For the blend wine, a less clear distribution of the samples was observed for evolution time of 3 and 6 months. This may indicate that blend wine might be less sensitive to SO2 doses and evolution time when compared with Antão Vaz wines. AAs profile showed that maturation on lees lead to an increasing total concentration of AAs. Based on PCA analyses it was observed that SO2 also influences the evolution of the amino acids especially on the AV wines.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gomes da Silva Marco1, Almeida Santos Cátia V.1, Pereira Catarina1, Martins Nuno1 and Cabrita Maria João1

1LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Contact the author

Keywords

White wine, Ageing, Sulphur dioxide (SO2), Amino acids, Volatile organic compound (VOC); HS-SPME-GC/MS; HPLC-DAD.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

How distinctive are single vineyard Gewürztraminer musts and wines from Alto Adige (Italy) based on untargeted analysis, sensory profiling, and chemometric elaboration?

Vitis vinifera L. ‘Gewürztraminer’ is a historical grape variety of Alto Adige (Südtirol), Italy, which is widely grown in the area of Tramin an der Weinstraße, but is also grown globally. It produces highly aromatic wines that are strongly influenced by the terroir of the vineyard sites where they are grown. This study looked at musts and young wines from ‘Gewürztraminer’ grapes harvested in seven distinct vineyards near Tramin and then processed at Cantina di Termeno, minimizing winemaking protocol variability. Samples were profiled using bidimensional gas chromatography–time-of-flight mass spectrometry, liquid chromatography coupled to electrochemical detection, and near-IR spectrometry. The data were subjected to Principle Component Analysis and Hierarchical Clustering Analysis. Sensory discriminant testing was undertaken using the sorting method with a semi-trained panel, and the data were processed using Multidimensional Scaling. Seven must/wine pairs could be distinguished based on their untargeted volatilome profiles and on sensory evaluation. As expected, there were greater differences in the volatile compounds between the wines than between the musts. The wines from vineyards 4 and 5 were nonetheless quite homogenous in terms of chemical and sensory analyses, as were the wines from vineyards 1 and 3. For the phenolic profile, differences were noted between the musts and wines of vineyards 2, 3, and 4, but the musts from vineyards 5 and 7 were similar. Sensory analysis showed the wines from vineyards 6 and 7 to be distinct from the rest. These results reinforce that the composition of ‘Gewürztraminer’ musts and wines is strongly determined by vineyard site, even in a small geographic area with high variability of the terroir (soil and microclimate), and that these differences are apparent in the flavours and aromas of the finished wines. Further confirmation would require a larger sample of wines, preferably from several vintages.

Prevention of quercetin precipitation in red wines: a promising enzymatic solution

In this video recording of the IVES science meeting 2023, Simone Vincenzi (Department of agronomy, food, natural resources, animals and environment (DAFNAE), University of Padova, Italy) speaks about the prevention of quercetin precipitation in red wines with a promising enzymatic solution. This presentation is based on an original article accessible for free on OENO One.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

DNA-free editing to improve stress resilience of wine grape genotypes recalcitrant-to-regeneration

Wine viticulture, being firmly linked to the vine-terroir relationship, has always encountered significant bottlenecks to genetic innovation. Nonetheless, the development of new breeding strategies leading to the selection of stress resilient genotypes is urgent, especially in viticulture, where it would allow reducing the use of chemical treatments adopted to control fungal diseases. Genome editing represents an extremely promising breeding technique. Unfortunately, the well-known recalcitrance of several wine grape cultivars to in vitro regeneration strongly limits the exploitation of this approach, which to our knowledge has so far been developed on table grape genotypes with high regeneration potential.

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].