IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 How different SO2 doses impact amino acid and volatile profile of white wines

How different SO2 doses impact amino acid and volatile profile of white wines

Abstract

Sulphur dioxide (SO2) is a well-established preservative in the wine industry. Its ability to act in different stages of the process as an antioxidant and an antiseptic as main characteristics makes it versatile. However, the need for its reduction or even its replacement has been increasing by the regulatory authorities as well as by the final consumer. To understand the impact of SO2 during ageing on volatile organic compounds (VOCs) and amino acids (AAs) profiles, two white wines (one varietal and one blend) were aged under the same conditions, in the presence of different doses of SO2. After fermentation (t=0), 0, 30, 60, 90 and 120 mg/L of SO2 were applied, wines were kept over lees for 3 months (t=3), then were bottled after 3 (t=6) and 9 (t=12) months. VOCs were analysed by HS-SPME-GC/MS for all samples and the AAs were analyzed by HPLC-DAD for t=0 and t=3 wines. A total of 83 VOCs were tentatively identified, 70 in monovarietal wine and 73 in the blend wine. The main chemical groups present are esters, alcohols, carboxylic acids, aldehydes and 12 miscellaneous compounds. When a Principal Component Analysis (PCA) was performed on VOCs semi-quantification of each wine it was observed that the 1st and 2nd PCs explained between 64% and 76 % of the overall system variance, for monovarietal and blend wines respectively. In monovarietal wine was attained lower distinctions for different SO2 applied doses on samples with 3 and 12 months. However, for 6 months of evolution samples are well separated. In this case, both principal components seem to influence the distribution of samples with a similar weight. For the blend wine, a less clear distribution of the samples was observed for evolution time of 3 and 6 months. This may indicate that blend wine might be less sensitive to SO2 doses and evolution time when compared with Antão Vaz wines. AAs profile showed that maturation on lees lead to an increasing total concentration of AAs. Based on PCA analyses it was observed that SO2 also influences the evolution of the amino acids especially on the AV wines.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gomes da Silva Marco1, Almeida Santos Cátia V.1, Pereira Catarina1, Martins Nuno1 and Cabrita Maria João1

1LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Contact the author

Keywords

White wine, Ageing, Sulphur dioxide (SO2), Amino acids, Volatile organic compound (VOC); HS-SPME-GC/MS; HPLC-DAD.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

This study was performed on Chasselas wine to assess the impact of exposure to wine light according to several glass color of bottles. The aim was to highlight any differences whether from an organoleptic or analytical point of view depending on the color. For this, four different shades were compared, dead leaf, green, cinnamon and transparent. A control, not treated with light, was also included in the study…

Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

The presence of unstable proteins in wines can affect their stability and clarity. Before bottling, winemakers need to be sure that the wine is stable. A large number of stability tests have been proposed, usually based on heating a sample with a specific time-temperature couple. In practice, none is effective to accurately assess the risk of instability. Moreover, the interpretation of the results of these tests changes according to the region.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

Sviluppo di una metodologia di tracciabilità e definizione dell’impronta petrochimica in suoli e vini della Sicilia occidentale nella piana di Marsala (TP)

I risultati delle ricerche condotte in un vigneto sperimentale di Marsala (TP), scelto per omogeneità di fattori bio-agronomici (età, tecniche colturali, potenzialità vegetativa e produttiva)

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).