IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Viticultural and enological strategies for the prevention of Botrytis cinerea- induced quality losses

Viticultural and enological strategies for the prevention of Botrytis cinerea- induced quality losses

Abstract

Infection of the grapes with Botrytis cinerea has a tremendous impact on the resulting crop yield and quality. Well-known problems that are associated with B. cinerea are specific off-flavors, poor filterability, and brownish color in white wines. The development of a B. cinerea infection strongly depends on weather conditions and is highly variable through different vintages. Typical control measures include defoliation and the use of fungicides, which involves high personnel and material costs. They also involve a great risk, especially since the effectiveness and time point of these treatments are difficult to predict. The frequency and severity of B. cinerea infections in Germany will increase due to climate change-induced alteration of weather conditions and the rise of new pathogen strains. In warmer, drier years, heavy Botrytis infection has already been observed, indicating the development of more aggressive strains. Common practices to deal with the negative effects of Botrytis on wine quality have been demonstrated to be ineffective and need to be reconsidered. To approach this problem, first experiments investigating oenological usage of coal and tannins in Botrytis infested must have been conducted. Sensory analysis and CATA confirmed, that common practices are not sufficient enough to battle Botrytis induced off-flavors. According to our results no clear positive effect of tannin treatment could be observed. To obtain more insight into the diversity of Botrytis strains, a PCR fingerprinting method is going to be established, as well as a qPCR method for biomass detection in to obtain more knowledge about climate based developments of B. cinerea. A method for detecting Botrytis induced aroma compounds like Geosmine and 1- Octen- 3-ol, was optimized by using a new CG-MS method. First results show success in validating different strains as well as detecting different aroma compounds in GC-MS.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Backmann Louis1, Umberath Kim-Marie2, Wegmann-Herr Pascal1 and Scharfenberg-Schmeer Maren3

1Institute for Viticulture and Enology (DLR-Rheinpfalz)
2Institute of Nutritional and Food Sciences, Bonn
3Microbiology, HS Kaiserslautern 

Contact the author

Keywords

Botrytis,enological treatments, sensory analysis,PCR, qPCR, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.