IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Brown Marmorated Stink Bug taint in grape must and wine: time evolution of trans-2-decenal

Brown Marmorated Stink Bug taint in grape must and wine: time evolution of trans-2-decenal

Abstract

The brown marmorated stink bug (BMSB, Halyomorpha halys Stal) is an invasive pentatomid native to eastern Asia that is spreading rapidly worldwide, notably through human-mediated activities. Globally, it was reported in the USA, Canada, Italy, Hungary, and other European countries. BMSB has a broad host range that includes over 170 plants, many of agricultural importance, including various fruit, vegetables, row crops, and ornamentals. When present in the vineyard, the pest can affect yield and quality by directly feeding on berries resulting in fruit collapse and necrosis. Additional damage occurs when BMSB are carried into the winery within the grape clusters. The presence of BMSB during wine processing can affect juice and wine quality through the release of volatile compounds produced as a stress response. The major secretes compounds are tridecane and trans-2-decenal. Tridecane is an odorless compound and its effect on wine quality is currently unknown. Trans-2-decenal is an unsaturated aldehyde considered to be the main component of BMSB taint with strong green, coriander, and musty-like aromas. Its threshold value in wine was estimated at about 5 µg/L.

The present study aims to evaluate the chemical/biochemical stability of trans-2-decenal and its longevity in grape juice and wine. The target compound was added at 200 µg/L in grape juice and the sample was split in two subsamples. One subsample was microbiologically stabilized using sodium azide, and the other one was subjected to a normal fermentation process. The concentration was monitored over the time by GC-MS technique highlighting a decrease of trans-2-decenal in both experimental conditions. The degradation occurs faster in fermented samples, probably due to the biochemical activity of the yeast and, just after 15 hours from the beginning of fermentation, the compound was no longer detected (<0.1 µg/L). Moreover, the stability of trans-2-decenal was also monitored in wine (200 µg/L) at two different temperatures: 4 and 30 °C. The degradation was also observed in the fermented media, with a strong dependence on temperature. The half-life period was estimated to be 10 days and 1 day at 4 and 30 °C, respectively.The results obtained in this study show that the molecule responsible for the unpleasant odour characteristic of BMSB degrades during the first stages of the fermentation. In the case of a further contamination or residue of the molecule at the end of the alcoholic fermentation, trans-2-decenal continues its disappearance with a slower kinetic rate, depending on the temperature.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Paolini Mauro1, Tonidandel Loris1, Roman Tomas1, Gallo Adelaide1 and Larcher Roberto1

1Fondazione Edmund Mach

Contact the author

Keywords

brown marmorated stink bug, trans-2-decenal, grape juice, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

Sustainability as system innovation: sustainability as system innovation: a returnable system for glass wine bottles

Introduction increasing sustainability is essential and a societal challenge, requiring fundamental changes in behaviour and attitudes. This applies to both producers and consumers. For the wine industry in particular, such a change is a major challenge. An eip-agri research project is evaluating the introduction of a returnable glass system in the german wine industry as a key solution for increasing sustainability. Given the need for change associated with a returnable system, the project is theoretically grounded in systems innovation, as this approach provides solutions for complex, transformative change.