WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Abstract

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

Our work shows the possibility of inducing the adhesion of O. œni and S. cerevisiae, alone or in co-culture, in low nutriment medium, on different materials already used in the winery environment, at the microplate scale, in static conditions. The quantities of attached biomass (CFU counts) are close for all the tested modalities at the end of the adhesion time (48h for S. cerevisiae and 72h for O. œni with one broth renewal). The inoculated supports are transferred after rinsing into tubes containing must or wine, depending on the application, and the progress of the fermentations is analysed. In most conditions, total sugars are below 5 g/l after 5 days of AF, and all malic acid in the substrate (about 4 g/l) is consumed in 10 to 15 days.

This immobilization model could be the first step towards a perfectly controlled industrial fermentation processes.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Marianne GOSSET, Patricia TAILLANDIER, , Christine ROQUES, Magali Garcia

Presenting author

Marianne GOSSET – LGC Biosym Toulouse

LGC Biosym Toulouse | LGC Biosym Toulouse | AB7 Industries

Contact the author

Keywords

Immobilization – O. oeni – S. cerevisiae – fermentations – industrial process

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs.

Irrigation frequency: variation and agronomic and qualitative effects on cv. Tempranillo in the D. O. Ribera del Duero

The application of irrigation in vineyard cultivation continues to be a highly debated aspect in terms of the quantity and distribution of water throughout the vegetative growth period.

Toasted Vine-Shoots As An Alternative Enological Tool. Impact On The Sensory Profile Of Tempranillo Wines

The use of toasted vine-shoots as an alternative enological tool to make differentiated wines has generated interest among researchers and wineries. However, the evolution of these wines in bottle and the effect on the sensory profile has not been studied so far.

Evolution of the crown procyanidins during wine making and aging in bottle

Condensed tannins are widely distributed in plant‐derived foods and beverages like grape, red wine, nuts, tea, apples and chocolate in which they contribute to multiple sensorial properties such as flavor, color, and taste (astringency and bitterness). During the wine making process,

Analyses of a long-term soil temperature record for the prediction of climate change induced soil carbon changes and greenhouse gas emissions in vineyards

The evaluation of the current and future impact of climate change on viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in almost all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the ipcc (the physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.