WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 The chemical composition of disease resistant hybrid grape cultivars and its impact on wine quality: an exploratory enquiry into sustainable wines

The chemical composition of disease resistant hybrid grape cultivars and its impact on wine quality: an exploratory enquiry into sustainable wines

Abstract

Disease resistant hybrid grape cultivars are now allowed in a number of EU wine PDOs, and are also accepted in a number of countries outside the EU. There is increasing interest in diseases resistant hybrid grape cultivars (RHGCs) because they allow for the production of healthy, high quality grapes with limited use of pesticides and the associated environmental and public health problems. However, the chemical composition of DRHGCs differs from Vitis vinifera, and hence winemaking protocols need to be adjusted. In particular, DRHGCs are frequently high in pH, due to their mineral content, and low in titratable acidity, due to the ability of the grapes to continue to accumulate acid post-véraison. They are also frequently low in tannins, partly due to their high protein content. This can also mean that the addition of exogenous tannins might not be sufficient to increase wine tannin levels to match Vitis vinifera wines. Depending on the species used in breeding, they can also have unusual herbaceous or ‘foxy’ aromas, which can be off-putting to consumers. In response, vignerons have trailed a number of different methods for vinifying DRHGCs, such as thermovinification, carbonic maceration, and cold soaks. The results of such trials are still inconclusive, and it is likely that different cultivars will require different approaches. This study will examine the chemistry of DRHGCs, and propose vinification techniques suitable for use in producing high quality wines. The paper is part of a broader investigation on sustainability in the wine sector and contributes to establish a scientific evidence for defining further steps in the direction of the ecological transition.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Gavin DULEY, Edoardo LONGO, Federica VIGANÒ, Emanuele BOSELLI

Presenting author

Gavin DULEY  – Free University of Bozen-Bolzano

Free University of Bozen-Bolzano, Free University of Bozen-Bolzano, Free University of Bozen-Bolzano

Contact the author

Keywords

Disease resistant hybrid grape cultivars – sustainable wines – winemaking protocols – green technologies – wine chemistry

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Estimating grapevine crop coefficients at high-resolution using open-source satellite data

Climate change results in increasing water stress due to co-effects of rising evapotranspiration (ET) and decreased precipitation over the past 65 years (Spinoni et al. 2019).

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Modulating the phyllosphere microbiome in grapevine using plant biostimulants to enhance protection against biotic and abiotic stress

Context and purpose of the study. Climate change scenarios predict ever increasing frequency of drought events and coupled with disease outbreaks poses survival risks to perennial fruit crops such as grapevine.