terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Phloem anatomy traits predict maximum sugar accumulation rates

Phloem anatomy traits predict maximum sugar accumulation rates

Abstract

Context and purpose of the study

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications. We expected hot-climate cultivars to delay sugar accumulation through traits that increase resistance to phloem transport.

Material and methods

We measured mature vines of 8 hot-climate (red: Syrah, Montepulciano, Mourvèdre, Tempranillo, Zinfandel, and Anglianico; white: Fiano and Verdelho, 7 warm-climate (red: Barbera, Cabernet Sauvignon, Merlot, Carignane, and Nebbiolo; white: Chardonnay and Sauvignon Blanc), and 1 temperate-climate (white: Riesling) cultivars growing in an experimental vineyard block on the UC Davis campus (N = 3 – 4 vines/cultivar). We measured berry total soluble solids (TSS) every 2 – 3 weeks from Jun – Sep 2020 and calculated the maximum sugar accumulation rate for each cultivar as the maximum slope of the relationship between TSS and growing degree days (GDD). We sampled leaves and berries in Sep 2020 and used light microscopy to measure total and mean phloem area area and scanning electron microscopy to measure sieve plate porosity and sieve element area in the leaf midvein, petiole, and berry pedicel.    

Results

The maximum sugar accumulation rate was significantly correlated with the total phloem sieve element area in the pedicel (r2 = 0.25, p = 0.046, N = 16) and petiole (r2 = 0.48, p = 0.004, N = 15). Maximum rates of sugar accumulation were faster in the cultivars with more phloem area. The total phloem area in the pedicel and the petiole was significantly smaller, and sugar accumulation was slower, in the hot-climate than the warm-climate red cultivars (ANOVA, p < 0.05). Mean sieve element area and sieve plate porosity were not significantly different between the climate groups or correlated with sugar accumulation rate (p > 0.05). These findings show that heat-adapted cultivars may avoid excessive sugar accumulation through phloem traits that reduce the capacity for sugar transport. Future work should test whether reduced phloem area also contributes to a water-saving strategy, by impeding sugar export from the leaves and activating sugar-induced signalling for stomatal closure. These findings also suggest a potential application for petiole phloem area in screening for rates of sugar accumulation, since petioles could be sampled years before vines are mature enough to produce fruit.    

DOI:

Publication date: June 21, 2023

Issue: GiESCO 2023

Type: Article

Authors

Megan BARTLETT1*, Ryan STANFIELD1, Sophia BAGSHAW1 , Kayla ELMENDORF1, Elisabeth FORRESTEL1

1Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Contact the author*

Keywords

sugar accumulation, phloem, plant anatomy, climate adaptation, viticulture

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Grape and wine quality of terraced local variety Pinela (Vitis vinifera L.) under different water management

Climate change is driving global temperatures up together with a reduction of rainfall, posing a risk to grape yields, wine quality, and threatening the historical viticulture areas of Europe.

Synthesis of scientific research on the application of mechanized grapevine pruning in the Republic of Moldova

One of the basic problems in the viticulture branch is the improvement of perspective technologies for both vine training systems: with vertical standing and with free position of shoots, adapted to the requirements of complex mechanization.

French regulations related to vineyard spraying and examples of devices developed in France and around the world to limit the risks of point-source pollution

Managing pests in vineyards presents a major challenge for winegrowers, who are seeking effective solutions to control diseases and pests.

Analyzing firms’ dynamic capabilities to identify the actions for a sustainable future of the Italian wine sector

The UN Agenda 2030 for Sustainable Development, a global plan for a better future, requires actions.

The evolution of wine tourism: trends, challenges and opportunities for the future

The wine tourism industry has experienced significant transformation over the past years, accelerated by the COVID-19 pandemic.