terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Abstract

Context and purpose of the study – Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungraftedrootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.

Material and methods – On six occasions over the season (one at well-watered, three at water deficit and two at recovery conditions), vine water relations and leaf gas exchange parameters, soil respiration and leaf chlorophyll content were determined and vegetative development was measured. The genotypes evaluated were four commercial rootstocks (110-Richter, 140-Ruggeri, Evex 13-5 and Fercal) and three recently bred (RG3, RG8 and RG9)

Results – Results showed that genotype significantly affect total biomass production, leading to differences of up to 33% between the vigorous 140-Ruggeri and Evex 13-5. Moreover, the ratio of carbon allocation in root and shoots was highly affected by genotype, although soil respiration only showed differences among them at specific soil water status. Rootstock genotypes had little effect on plant water status under well-watered conditions but significantly affected it under water deficit and recovery. Leaf gas exchange parameters showed significant differences among genotypes within each water status. At most stages, 110-Richter displayed higher stomatal conductance and photosynthetic rates than Fercal, despite the overall higher leaf chlorophyll rates of the latter. In fact, the lower osmotic adjustment capacity shown by 110-Richter compared to Fercal may be affecting water relations in such a way that it confers higher leaf gas exchange rates than the latter. In turn, it seems that this may be related to the lower investment of 110-Richter in root biomass compared to aerial biomass, in contrast to Fercal. These results highlight the large differences in rootstock responses to water availability and unravel their physiological basis. Further studies are needed to assess how these responses are transferred to the scion.

DOI:

Publication date: June 23, 2023

Issue: GiESCO 2023

Type: Article

Authors

Ignacio BUESA1,2, Esther HERNÁNDEZ-MONTES3, Antoni  SABATER1, Íñigo GÓMEZ1, Hipólito MEDRANO1,2, José M. ESCALONA1,2*

1Research Group on Plant Biology Under Mediterranean Conditions, Department of Biology, University of Balearic Islands (UIB). Ctra. Valldemossa km 7,5 E-07122 Palma, Balearic Islands, Spain
2Agro-Environmental and Water Economics Institute-University of Balearic Islands (INAGEA-UIB). Ctra. Valldemossa km 7,5 E-07122 Palma, Balearic Islands, Spain
3Horticulture Department, Universidad Politécnica de Madrid (UPM), Madrid, Spain

Contact the author*

Keywords

grapevine, water relations, gas exchange, respiration, biomass

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].