terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Abstract

Context and purpose of the study – Weather uncertainty is forcing Mediterranean winegrowers to adopt new irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine quality standards. Therefore, more accurateand high-resolution monitoring of soil water content and vine water status is a major concern. Leaf water potential measured at pre-dawn (YPD) is considered to be in equilibrium with soil water potential and is highly correlated with soil water content at the soil depth where roots extract water.
The aim of this study is to evaluate a dataset of eco-physiological data collected in a 3-year vineyard irrigation trial to assess the explanatory power of the fraction of transpirable soil water (FTSW) to predict YPD by comparing the classical statistical regression approach with a machine learning algorithm (MLA).

Material and methods – Deficit irrigation trials were conducted from 2013 to 2015 in a commercial vineyard in the Alentejo (southern Portugal). Trial plot was planted with Vitis vinifera (L.) cv. Aragonez (ARA)(syn. Tempranillo), grafted onto 1103 Paulsen rootstock and spaced 1.5 m within and 3.0 m between N-S oriented rows. The experimental layout was a randomized complete block design with two treatments: sustained deficit irrigation (SDI – control; ~30% Etc) and regulated deficit irrigation (RDI; ~15% Etc) and 4 replicates per treatment. The YPD and soil water content were measured the day before and the day after each irrigation event by using a capacitance probe down to a soil depth of 1 m and a Scholander pressure chamber. Models predicting YPD from FTSW were trained on 600 data cases and validated on an independent dataset (10% of all available data) using MATLAB R2022b (Mathworks, USA) and STATISTICA 13 (Tibco, USA). 

Results – Our results show that 87.6% of the observed YPD variability is explained by the FTSW using a linear regression model (LRM) with a linear-logarithmic transformation of the independent variables. The accuracy of the prediction model, as measured by root mean squared error (RMSE), in the independent validation dataset, was 0.08 MPa. These results were compared to the estimation accuracy of a set of MLAs. Two support vector machine (SVM) algorithms with a quadratic and a medium Gaussian kernel function, and three Gaussian process regression (GPR) algorithms with an exponential, a squared exponential and a rational quadratic kernel functions were tested. All trained MLAs showed an accuracy in explaining the variability of the YPD (86-87%) similar to the LRM. An increase in the model explained variability of the independent dataset from 89 to 91% was observed in all MLAs, with an accuracy of 0.087 to 0.096MPa as measured by the RMSE.
Both statistical methods indicate that YPD can be estimated with good accuracy using FTSW as an explanatory variable. Regarding the comparative performance of the two types of statistical models no differences were found in the ability of the tested models to estimate YPD.

DOI:

Publication date: June 29, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Ricardo EGIPTO1*, J. Miguel COSTA2, José SILVESTRE1, Carlos M. LOPES2

1INIAV IP – Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal
2LEAF – Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Univ. Lisboa, Portugal

Contact the author*

Keywords

deficit irrigation, soil water content, machine learning algorithms

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Launching the GiESCO guide

Launching the GiESCO guide

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.