GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Abstract

Context and purpose of the study – Late season dehydration, bunch stem necrosis, sugar accumulation disorder and sunburn are various types of berry shrivel occurring in vineyards. The incidence of these types of shrivel, and the degree to which it occur are influenced by various factors in the vineyard. These factors include the presence of pests and diseases in the vineyard, genetic traits expressed in certain cultivars, as well as climatic and environmental factors. The occurrence of berry shrivel in the vineyard could negatively impact the quality and quantity of the fruit produced. The aim of this study was to visually characterise the different types of berry shrivel occurring and the corresponding in two cultivars Vitis vinifera L. Chenin blanc and Shiraz in the Stellenbosch Wine region.

Material and methods – In this study the occurrence of berry shrivel in Chenin blanc and Shiraz grapes were studied in two vineyards in the Stellenbosch Wine of Origin district during the 2017/2018 ripening season. Two distinct microclimates were established by implementing a leaf removal treatment in the bunch zone of the canopies on the morning side of some of the experimental panels around véraison, leading to a more exposed microclimate (leaf removal treatment) versus untreated control panels. To confirm microclimatic impacts, loggers were placed in the vineyards to measure the temperatures in the bunch zone of the control and treatment panels. Additionally, grape composition (berry fresh weight, berry volume, total soluble solids, pH and TA was monitored during the growing season for each of the grape cultivars.

Results – Bunches on vines where leaves were removed were exposed to more direct sunlight and temperature extremes, hence sunburn‐related berry shrivel was induced in these vines, especially in the Chenin blanc cultivar. Other types of berry shrivel were however also identified in both cultivars to various degrees during the ripening season, but late stage dehydration also occurred in both cultivars at the overripe stage. It was possible to visually follow the progress of shrivelling throughout the season and a grading scale was implemented to calculate the affected bunch areas. Slight differences were observed in the grape composition of the control (shaded) and exposed (treatment).

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Erna BLANCQUAERT1

1Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa

Contact the author

Keywords

berry shrivel, dehydration, necrosis, sunburn

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Unexpected relationships between δ13C, water deficit, and wine grape performance

Water nutrition is crucial for wine grape performance. Thus soil investigation aims at characterizing spatial and temporal variability of available water. A possible strategy

Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Temperature is a relevant parameter during vineyard development, affecting vine phenology and grape maturity. Moreover, the climate of the different Chilean valleys influences the varieties cultivated, the ripening period and the final quality of the wines. The use of growing degree days (GDD) is known worldwide for the study of climate in viticulture regions. However, little is known about the evolution of maturity and the sugar loading stop, based on this parameter.

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.

Modélisation du régime thermique des sols de vignoble du Val de Loire : relations avec des variables utilisables pour la caractérisation des terroirs

Temperature has a decisive influence on the growth and development of plants (Carbonneau et al., 1992). In particular, in the case of the vine, the temperature is an omnipresent variable in the climatic indices (Huglin, 1986). For reasons of convenience, these indices use the temperature of the air measured under shelter in a meteorological station, making the implicit hypothesis of a concordance between this temperature and that of the sites of perception of the thermal stimulus by the plant. However, development may be more dependent on soil temperature than air temperature (Kliewer, 1975). Morlat (1989) thus verified that the variability in the precocity of the vine, positively correlated with the quality of the harvest and of the wine in the Loire Valley, was mainly explained by differences in temperature of the root zones.