GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

Abstract

Context and purpose of the study – In vineyards grown in warm areas, it is usual that the stage of maturity of the grapes is fast and easily reach a high concentration of sugar and low acidity, but not a adequate phenolic maturation. The geometry of the trellis system and the shoot density can modify the microclimate of the cluster and, therefore, the maturation process.

Material and methods – In order to know whether, in warm areas, free or semi-free foliage systems are most appropriate to achieve a maturity more balanced than systems with guided foliage, such as the vertical shoot positioned, during 2013 and 2014 developed a test in a vineyard of Cabernet Sauvignon in Albacete (Spain). Comparing two trellis systems – vertical shoot positioned and sprawl -, each of them with three shoot densities – 35000, 55000 and 70000 shoots per hectare-. During maturation were determined the weight of the grape and the basic composition of the must (° Brix, pH and total acidity). Yield components and the grape phenolic components were determined at harvest.

Results – In both trellis systems the increased of crop load generated a proporcional increase in yield respect number of shoot, in addition to a delay in maturation, with lower concentrations of sugar and total phenols, and higher acidity. The vineyard in sprawl reached, usually, higher concentrations of sugar, but with equal or lower levels of acidity on vertical shoot positioned, which means a better sugar/acidity balance. The effect of the trellis system on the grape phenolic components was not consistent for the two years of study.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Emilio PEIRO1,2*, Pedro JUNQUERA1,2, José Ramón LISSARRAGUE1,2

1 Grupo de Investigación en Viticultura. E.T.S.I.A.A.B. Universidad Politécnica de Madrid. C/ Senda del Rey s/n, 28040. Madrid, Spain
2 Gestión Integral de Viticultura (GIVITI), C/ Alcántara nº 46, bajo drcha, 28006, Madrid, Spain

Contact the author

Keywords

trellis systems, shoot density, yield, berry composition

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint.

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform.

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.