GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Volatile organic compounds investigation in Müller Thurgau wines obtained from vineyard treated with biochar

Volatile organic compounds investigation in Müller Thurgau wines obtained from vineyard treated with biochar

Abstract

Context and purpose of the study – Volatile Organic Compounds (VOCs) are responsible for the flavor and aroma of a wine. The sensory qualities of the wines depend not only on grape intrinsic characteristics, but also on extrinsic factors including the soil composition. Previous studies have shown that the application of pyrogenic carbon (biochar) can lead to a change in soil parameters. For that reason, one of the goals of the ERDF funded project «WoodUp» is the characterization and reutilization of the locally produced biochar for agricultural purposes. In this study wine quality is investigated to better understand how the chemical and physical modification of the soil can influence the wine VOCs profile from Müller-Thurgau, after biochar application.

Material and methods – Wines obtained from vineyard treated with different amounts of biochar were analyzed (3.9 kg/ m² dry matter compost, 2.5 kg/m² dry matter biochar, 5 kg/m² dry matter biochar, 2.5 kg/m² dry matter biochar plus 3.9 kg/ m² dry matter compost, 5 kg/m² dry matter biochar plus 3.9 kg/ m² dry matter compost and the untreated as control). Samples, 1.5 ml of each wine, were placed into 20 ml glass vial with the addition of 0.45 g of NaCl and 5 μl of 2-octanol (123 ppm) as internal standard. The volatile composition of wines was determined by using headspace solid phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC–MS) in full scan mode. The headspace was sampled using a DVB/CAR/PDMS 50/30 μm fibre; chromatography was performed on either a 30 m ×0.25 mm id×0.25 μm ZB-WAX column (Phenomenex, UK). Samples were analyzed in triplicate.

Results – Preliminary data analysis of the full scan acquisition allowed the identification of 47 volatile compounds in wine samples. Tentative compound identification was based on at least 70% quality match with NIST 17 database information for each compound. In addition, experimental Retention Indexes were calculated and compared with the theoretical ones. Among the identified compounds we find acids, esters, alcohols and some terpenes. More detailed data analysis is necessary to identify the differences on wines aroma compounds produced starting from different treated vineyard and to understand the influence of the soil composition on wine characteristics.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giulia CHITARRINI1*, Maximilian LÖSCH2, Barbara RAIFER2, Peter ROBATSCHER1

1 Laboratory for Flavours and Metabolites, Institute for Agrochemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy
2 Physiology and Cultivation Techniques, Institute for fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy

Contact the author

Keywords

grapevine, biochar, pyrogenic carbon, VOCs, GC-MS

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Melatonin priming retards fungal decay in postharvest table grapes 

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.
Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown.

Does treatment of grape juice with aspergillopepsin-i influence wine aroma?

Acid aspergillopepsins-i (ap-i) have been suggested for use in winemaking due to their ability to degrade proteins, which reduces haze formation and the necessity for bentonite to achieve protein stability. These endopeptidases cleave non-terminal amino acid bonds of proteins, resulting in their degradation.

A first look at the aromatic profile of “Monferace” wines

Grignolino, is a native Piedmont grape variety which well represents the historical and
enological identity of Monferrato, a territory between Asti and Casale Monferrato, included in the World Heritage List designated by UNESCO (1).

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.

Enhancing the color traits of ‘Nebbiolo’ and ‘Dolcetto’ grapes: the role of abscisic acid during ripening

The red Italian variety Nebbiolo (Vitis vinifera L.), used in the production of the prestigious Barolo and Barbaresco wines, is renowned for its aromatic and structural complexity but also for its low color intensity.