GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Phenolic composition of Xinomavro (vitis vinifera L.cv.) grapes from different regions of Greece

Phenolic composition of Xinomavro (vitis vinifera L.cv.) grapes from different regions of Greece

Abstract

Context and purpose of the study – Phenolic compounds are located in skins and seeds and are responsible for important sensory and quality attributes of red grapes and wines, such as astringency, bitterness and colour. However, little is known regarding Greek varieties.The aim of this study is to evaluate the grape phenolic content and to present data that characterize the red grape variety Xinomavro (Vitis Vinifera L. cv.) from different wine regions of Greece.

Material and methods – In this study berry attributes, skin and seed content of phenolic compounds of 18 grape samples from four different regions in Greece, namely Naoussa, Amyntaino, Goumenissa and Rapsani were analyzed. Skins and seeds were removed from berries and different solvents were used in them for the extraction of anthocyanins and tannins. For tannin estimation, the protein precipitation assay using bovine serum albumin was employed. Anthocyanins were determined in skins by High-performance liquid chromatography (HPLC).

Results – According to the results, significant differences were observed in berry weight among the different regions, however the distribution of berry components in mature berries, % skin per berry and % seed per berry weight ratio, had no difference between the samples. The contribution of skins and seeds in berry were 8.1% and 2.6%, respectively. The higher content of total tannins and total anthocyanins in berries were observed in grapes from Amyntaio region. Grapes from Naoussa region had the lower concentrations of skin tannins and total anthocyanins. Finally, the lower concentrations of seed tannins were determined in Goumenissa grapes.

DOI:

Publication date: September 8, 2023

Issue: GIESCO 2019

Type: Poster

Authors

Maria KYRALEOU1, Stamatina KALLITHRAKA1, Eugenia GKANIDI1, Stefanos KOUNDOURAS2

1 Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
2 Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

Contact the author

Keywords

grapes, anthocyanins, tannins, HPLC, Greek winegrape varieties

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed.

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Soil carbon changes and greenhouse gas emissions in vineyards – Is the 4 per 1000 goal realistic?

In this video recording of the IVES science meeting 2023, Hans Reiner Schultz (Hochschule Geisenheim University, Germany) speaks about soil carbon changes and greenhouse gas emissions in vineyards – is the 4 per 1000 goal realistic?. This presentation is based on an original article accessible for free on OENO One.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).