OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

Abstract

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors. One of the most important factors that will unequivocally affect the final wine pro-perties is the grape maturity level. Grape ripening is an extremely complex process, in which the metabolites and precursors concentrations change significantly with time. However, the knowledge of how grape ripe-ning affects wine aroma composition is still quite limited. Nowadays, wineries measure parameters such as sugar, pH, acidity and colorimetric tests to evaluate the degree of maturity of the vintage and decide the harvest data, but these analysis do not take into consideration the aromatic potential of the grape. The objective of the present work is to understand the differences in the aroma chemical profile of Moristel wines from different vineyards harvested at different time points. So, three different vineyards of Moris-tel grape variety in D.O. Somontano were selected, in two consecutive vintages: two in 2016 and one in 2017. Each block was harvested at different time points followed by microvinifications applying the same fermentation protocol. All of them have been elaborated in triplicated. This was assessed by the analysis of major aroma compounds (GC-FID), trace aroma compounds (GC-MS), methoxypyrazines (TD-GCxGC-MS), polyfunctionalmercaptans (SPE GC-MS), volatile sulfur compounds (BR-VSCs) and total acetaldehyde (HPLC-UV/VIS). The most important result is that the grapes harvested at 42 days postveraison, that is the “green” ones, pro-duce wines with high concentration of acetaldehyde and low IPT. Hence, low concentration of polyphenols facilitate the accumulation of this compound. Another reason for these acetaldehyde high concentrations could be problems associated with the lack of reduction factors (NADH or NADPH). This fact is also corroborated with the decreases of branched acid / fusel alcohol and branched ester/fu-sel alcohol ratios during the maturity. These facts can have very important sensory repercussion, the acetaldehyde and fusel alcohol are components of aroma buffer.

Finally, the evolution of certain maturity markers (c-3-hexenol, Y-nonalactona, rotundone) has been also observed, but these target compounds, by themselves, do not seem to have great sensory relevance in the final wines. This study has help to elucidate how grape maturity state contributes to final Moristel wine aroma profile and possible self-life.

Acknowledgements

This work has been funded by the Spanish MINECO (Project AGL2014-59840, RTC 2015-3379 and RTC-2016-4935-2) and partly co-funded by the European Union (FEDER). I.A. has re-ceived a grant from the Spanish FPU programs. Funding from D.G.A. (T53) and Fondo Social Europeo is acknowledged.

DOI:

Publication date: June 9, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ignacio Arias, Sara Ferrero-del-Teso, María Pilar Sáenz-Navajas, Purificación Fernández-Zurbano,Blanca Lacau, Jesús Astraín, Cristina Barónv Vicente Ferreira, Ana Escudero

Instituto de Ciencias de la Vid y el Vino (ICVV) (Universidad de La Rioja-CSIC-Gobierno de La Rioja), Carre-tera de Burgos Km. 6, Finca La Grajera, 26007 Logroño, La Rioja, Spain
Laboratorio de análisis del aroma y enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA). Calle Pedro Cerbuna, 12, 50009 Zaragoza

Contact the author

Keywords

Wine aroma, maturity, acetaldehyde, reduction factors

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid).

Mannoproteins extraction from wine lees using natural deep eutectic solvents

Wine lees can be a good source of yeast mannoproteins for both food and wine applications [1,2]. However, mannoprotein extraction from wine lees has not yet been scaled up to an industrial scale, mainly because of the limited cost-effectiveness ratio of the methods employed at the laboratory scale [2].

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).