GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

Abstract

Context and purpose of the study – In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency. Carbon isotope ratio (δ13C) of grape must sugar has been investigated as an integrating marker related to water use efficiency and water status in grapevines. The present study was aimed to explore water use efficiency in several cultivars subjected to different irrigation regimes, in order to know those that were more efficient and subsequently develop specific watering protocols for each of them, according to sustainable production and quality goals.

Material and methods – This study was carried out in 2017 and 2018. Variety response of δ13C to different irrigation regime was assessed in a multivarietal vineyard. Grown on trellises, at a distance of 2.8m x 1.2m (row by vine spacing), the plants are trained to a single guyot system, with 110 Richter as rootstock. Orientation is 30oNE/210oSW and the vineyard is irrigated by a drip system with two drippers per vine-stock. Four treatments were considered: survival, 0.20 ET0, 0.25 ET0 and 0.30 ET0. Determination of the carbon isotope ratios of grape must was carried out by on-line analysis using a ThermoQuest Flash 1112 elemental analyser equipped with an autosampler and coupled to a Delta-Plus IRMS (ThermoQuest) through a ConFlo III interface (ThermoQuest). In addition to δ13C in must sugar, yield components and must quality parameters were determined for each treatment and variety.

Results – Irrigation promoted a decrease of carbon isotope ratio in must sugar. The relationship between δ13C and water volumes used in irrigation treatments was negative and moderately significant. Considering the data of two vintages together and treatment as a variable, the effect of irrigation regime in carbon isotope ratio was observed in all cases with significant differences ranging from -22.58 for T0 to -24.48 for T3, whereas in WUE only T0 (30.15 g/L) stood out from the rest (12.86 g/L, 10.84 g/L and 10.32 g/L for T1, T2 and T3 respectively). On the contrary, when grapevine variety was a variable, there were only significant differences in δ13C when considering vintages independently. It was in 2017, with values ranging from -23.52 for Airén to -24.69 for Moscatel de Grano Menudo. Regarding WUE, in neither of two vintages separately there were significant differences. Between δ13C and agronomic parameters there were some correlations with different significance levels. This study contributes to improving knowledge about what of the cultivars grown in the areaare more efficient from the water use point of view, and the irrigation regimes that would have to be established to achieve sustainable production, both quantitatively and qualitatively, with the minimum water volume.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Juan Luis CHACÓN*, Jesús MARTÍNEZ, Adela MENA

Instituto de la Vid y el Vino de Castilla-La Mancha (IVICAM), Tomelloso, Spain

Contact the author

Keywords

carbon isotope ratio, grapevine, irrigation, Vitis vinifera L., water use efficiency

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Soil fertility and confered vigour by rootstocks

The adaptation of rootstock to scion variety and soil determines largely the control of the vegetative growth for grapevine. Many experiments were performed in the vineyard to classify the rootstocks according to their soil adaptation and to their effect on vine vigour. So far there are no data describing the course of appearance of rootstock effects after plantation. Moreover the underlying mechanisms of conferred vigour remain largely unknown.

Terpenoids and norisoprenoids in italian red wines

AIM Terpene compounds are associated with floral notes and are characteristic of aromatic grape varieties such as Muscat (Jackson, 2008). They are generally considered to potentially contribute to the aroma of white wines. However, there is a growing interest towards the potential contribution of terpene compounds to the aroma of red wines. The aim of this work was to investigate the occurrence of different terpenes in red wines from Italian varieties. METHODS For this study wines from 11 mono-varietal Italian red wines from 12 regions were used (19 Sangiovese, 11 Nebbiolo, 10 Aglianico, 11 Primitivo, 10 Raboso del Piave, 9 Cannonau, 11 Teroldego, 3 Nerello, 9 Montepulciano, 7 Corvina). All samples were from vintage 2016 and none of them had been in contact with wood. A total of 19 terpenes and 7 norisoprenoids were analysed by mean of SPME-GC-MS analysis using a DVB-CAR-PDMS fiber. The wines were collected in the framework of the activities of the D-Wines (Diversity of Italian wines) project.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Observatoire du Grenache en Vallée du Rhône: incidence du terroir sur la diversité analytique et sensorielle des vins

Rhone Valley A.O.C. Vineyards cover more than 70 000 hectares, of wich more than 40 000 plantedwith Grenache N. The Grenache observatory was created in 1995.