terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Abstract

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries. In 2015 a breeding program was started at the University of Zagreb Faculty of Agriculture. The long-term goal is to develop new varieties suitable for Croatian growing conditions, with stable and durable resistance using native germplasm and other sources of resistance.  

 

Native varieties Grk and  Dišeća ranina were selected as a starting point for the breeding program because they pose female flower type, aiming to develop breeding lines with female flowers. The source of resistance in the program’s first stage is the Panonia variety. After applying molecular markers in the population of seedlings expressing the high level of phenotypic resistance to downy and powdery mildew, several plants were detected that inherited all three resistant gene loci (Rpv3, Rpv12 – downy mildew resistance, Ren3 – powdery mildew resistance) from Panonia and female flower from chosen native varieties. They were included as mother plants in the program’s next step and were crossed to obtain breeding lines with additional resistant gene loci.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Darko Preiner1,2*, Ivana Tomaz1,2, Iva Šikuten1,2, Zvjezdana Marković1,2, Petra Štambuk1,2, Jasminka Karoglan Kontić1,2, Domagoj Stupić1, Edi Maletić1,2

1University of Zagreb Faculty of Agriculture, Svetošimunska 25, Zagreb, Croatia
2 Center of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, Zagreb, Croatia

Contact the author*

Keywords

grapevine breeding, genetic resources, resistant varieties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.