terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic profiling of heat-stressed grape berries 

Metabolomic profiling of heat-stressed grape berries 

Abstract

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS). Hence, the objective of the present study is to investigate the metabolome profiling on grape berries, exposed or not, to high temperature. We applied HS directly on clusters from V. vinifera L. Cabernet Sauvignon (heat sensitive genotype) and V. vinifera L.  Merlot (heat tolerant genotype) at different developmental stages. HS was applied continuously from 8:00 am to 16:00 pm for up to 10 days in greenhouse. The temperature difference between the HS-treated and control bunches was 9 °C. Berry samples were collected after both short-term and long-term HS treatment and metabolomic analyses were conducted using the untargeted LC-MS approach. Data processing was performed by MS-DIAL 4.94 and MetaboAnalyst 5.0.

Our first set of results highlights metabolites and distinct biochemical pathways impacted by HS, according to the thermotolerance ability of the evaluated cultivars. Our data also underline the temporal dynamics of metabolic responses triggered by HS, highlighting the importance of characterizing these metabolic changes at different time scales.

Acknowledgements: This work is supported by the ANR (PARASOL Project, ANR-20-CE21-0003) and X. Z. PhD thesis is founded by China Scholarship Council. The authors would like to EGFV Materiel-Vegetal team and Dr. Erwan Chavonet for the fruit cutting production.

References:

  1. Lecourieux F. et al. (2017) Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing cabernet sauvignon grape berries. Front Plant Sci 8: 53

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Xi ZHAN1*, Adam ROCHEPEAU2, Cédric CASSAN2, Fatma OUAKED-LECOURIEUX1, Pierre PETRIACQ2, David LECOURIEUX1

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France 
2Bordeaux Metabolome, INRAE Bordeaux Nouvelle Aquitaine, INRAE, Villenave d’Ornon, France

Contact the author*

Keywords

grapevine, berry quality, metabolomics, high temperature, climate change

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices.

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.