terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic profiling of heat-stressed grape berries 

Metabolomic profiling of heat-stressed grape berries 

Abstract

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS). Hence, the objective of the present study is to investigate the metabolome profiling on grape berries, exposed or not, to high temperature. We applied HS directly on clusters from V. vinifera L. Cabernet Sauvignon (heat sensitive genotype) and V. vinifera L.  Merlot (heat tolerant genotype) at different developmental stages. HS was applied continuously from 8:00 am to 16:00 pm for up to 10 days in greenhouse. The temperature difference between the HS-treated and control bunches was 9 °C. Berry samples were collected after both short-term and long-term HS treatment and metabolomic analyses were conducted using the untargeted LC-MS approach. Data processing was performed by MS-DIAL 4.94 and MetaboAnalyst 5.0.

Our first set of results highlights metabolites and distinct biochemical pathways impacted by HS, according to the thermotolerance ability of the evaluated cultivars. Our data also underline the temporal dynamics of metabolic responses triggered by HS, highlighting the importance of characterizing these metabolic changes at different time scales.

Acknowledgements: This work is supported by the ANR (PARASOL Project, ANR-20-CE21-0003) and X. Z. PhD thesis is founded by China Scholarship Council. The authors would like to EGFV Materiel-Vegetal team and Dr. Erwan Chavonet for the fruit cutting production.

References:

  1. Lecourieux F. et al. (2017) Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing cabernet sauvignon grape berries. Front Plant Sci 8: 53

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Xi ZHAN1*, Adam ROCHEPEAU2, Cédric CASSAN2, Fatma OUAKED-LECOURIEUX1, Pierre PETRIACQ2, David LECOURIEUX1

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France 
2Bordeaux Metabolome, INRAE Bordeaux Nouvelle Aquitaine, INRAE, Villenave d’Ornon, France

Contact the author*

Keywords

grapevine, berry quality, metabolomics, high temperature, climate change

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.