terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Abstract

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.  In the upper part of the hill (NE-upper), moderate water deficits occur regularly, while in the lower part (NE-lower) this phenomenon is usually not observed. Pre-dawn, stem and midday water potential were monitored during the growing season using a Scholander-type pressure chamber. Climatic data were measured with an automatic weather station. Gas-exchange parameters were measured with a Ciras-1 infrared gas-analyzer. Finally, yield (berry weight, skin weight, seed weight, skin to flesh ratio) and quality parameters of the fruit were also measured at harvest time.

Climatic data show that 2022 was much warmer and drier than 2021.This had a great impact on water potential and gas-exchange of the vines. Different vine varieties responded differently to the same water deficit. This was reflected in physiological parameters as well as in the yield quality and quantity. It seems, that the Kadarka variety is less sensitive to higher VPD than Furmint and Syrah. This is reflected in both stomatal conductance and net photosynthesis. The skin-to-flesh ratio increased significantly for all three varieties in 2022. However, Kadarka variety responded to water deficit with a strong, whereas the Syrah responded moderate increase in skin weight. Furmint, on the other hand, showed the most significant decrease in pulp weight, associated with a small increase in skin weight.

Acknowledgements: This research was funded by Thematic Excellence Program (grant no. TKP2021-NKTA-16).

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Zsolt Zsófi1*, Szabolcs Villangó1, Adrienn Tóth1, László Lakatos2, Anna Molnár3, Luca Lepres3, Xénia Pálfi3, Kálmán Váczy3

1Eszterházy Károly Catholic University, Institute for Viticulture and Enology, Eger Leányka Street 6.
2Eszterházy Károly Catholic University, Department of Environmental Sciences and Landscape Ecology, Eger Leányka Street 6.
3Eszterházy Károly Catholic University, Food and Wine Research Institute, Eger Leányka Street 6.

Contact the author*

Keywords

water deficit, climate change, Furmint, Kadarka, Syrah, terroir, gas-exchange, yield

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.