terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

Abstract

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective. This technique consists of trimming the developed primary shoots at the end of flowering, above the node number seven. The aim of this work was to evaluate the effect of SSP under drought conditions and high temperatures on the ‘Tempranillo’ wine phenolic composition compared with non-trimming vines (NT) grown under conventional practices (just winter pruning) during the 2022 season. None of the treatments were irrigated. The wines were elaborated according to traditional red wine-making method and their general and chromatic parameters were analysed. Respect to NT, the SSP treatment showed slightly lower ethanol content and significantly reduced the dry extract, pH, malic acid and potassium, total phenolic content and color intensity values. When the polyphenolic profile of wine was analysed by HPLC techniques, respect to NT wines, the SSP ones showed an increase in coumarilated anthocyanins, and a decrease in the concentration of monoglucoside anthocyanins, flavonols, phenolics acids and total anthocyanins content. In conclusion, under these study conditions (including non-irrigation, extremes temperatures and dry weather), severe pruning of the vine shoots was not effective in improving the phenolic profile of the wine. It would therefore be necessary to analyse this technique accompanied by supportive irrigation during the ripening cycle of the grapes.

Acknowledgements: This research was supported by funds from Project IB20082, the ERDF, Junta de Extremadura, AGA001 (GR21196) and Investigo Program, financed by The Recovery and Resilience Facility. The authors would like to thank Bodegas Viñas De Alange S.A. for their collaboration.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lavado N1*, Dorado M.J1, Mancha L.A1, Valdés M.E1, Uriarte D1, Guerra M.T2, Fondón-Aguilar A1, Moreno D1

1Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España)
2Centro Universitario Santa Ana (CUSA). IX Marqués de la Encomienda, 2, 06200 Almendralejo, Badajoz

Contact the author*

Keywords

anthocyanin, flavanol, flavonol, phenolic acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.