terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Abstract

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families. Two Vitis vinifera extracts obtained from red grape skins (GG) and seeds (TS) were studied. Standards of malvidin, epicatechin and myricetin were also included in this study. The antimicrobial activities of the polyphenolic extracts and standards alone and in combination with the corresponding antibiotic of reference were evaluated against the six multidrug-resistant strains. Minimal inhibitory concentration (MIC) and fractional inhibitory concentration index (FIC) were determined. FIC values were interpreted as follows: synergy (FIC≤0.5); partial synergy (0.5<FIC<1); additive effect (FIC=1); indifference (1<FIC<2) and antagonism (FIC≥2).

The oenological extracts tested alone inhibited the growth of the six multidrug-resistant strains: GG (MIC=6.25 mg/mL) and TS (MIC≥1 mg/mL), and their effect was bacteriostatic. Combined with the corresponding antibiotic, GG showed a synergistic effect against all the E. coli and E. faecium strains (FICs=0.4-0.6), and it was able to reduce 3-8-fold the antibiotic MICs. Similarly, malvidin inhibited the growth of all the strains (MICs=0.67-1.34 mg/mL), it showed a synergistic effect in combination with the corresponding antibiotic against all the studied strains (FICs=0.6-0.9) and it was able to reduce 2-4-fold the antibiotic MICs. TS, epicatechin and myricetin were also able to inhibit the growth of all the strains (MICs=0.3-2.68 mg/mL) and their effect in combination with the corresponding antibiotic was either additive or indifferent (1£FICs<2).

Acknowledgements: ADER2019-I-IDD-00048 of the C.A.R./FEDER; AFIANZA 2022, PR-10-20 and PR-11-19 of the C.A.R.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Rocío Fernández-Pérez*, Carmen Tenorio Rodríguez and Fernanda Ruiz-Larrea
Universidad de La Rioja, ICVV (Instituto de Ciencias de la Vid y del Vino: CSIC, Universidad de La Rioja, Gobierno de La Rioja), Av. Madre de Dios 53, 26006 Logroño, Spain

Contact the author*

Keywords

antibiotic resistance, MIC, FIC, synergy, polyphenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Evaluation of Furmint clones in the Tokaj Wine Region

The ’Furmint’ is the most important grape variety in the Tokaj Wine Region, constituting around 65% of its vineyard area. Before the phylloxera disease many types were grown, but as selection started in the 20th century, its diversity dramatically narrowed. As a result, the cultivation of Furmint was based mainly on two heavy-cropping clones, T.85 and T.92 at the end of the ’80s. Aims of present clone research take into account that after solely quantity as target, quality emerged in the 1990’s and most recently, typicity appeared as more private estates began their own selection program.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).