terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Abstract

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural practices need to be examined to decrease the levels of sugars. Anti-transpirants have been used to some degree of success, however their benefits may be linked to the varietal and style of wine produced.3 With this in mind we undertook a study of anti-transpirant application to merlot grapes to determine its effectiveness for reducing alcohol in Rosé wines.

The trial was performed in a commercial vineyard in the Hawke’s Bay region of New Zealand. The vines were two cane pruned and the vineyard was managed under conventional practices. The trial was setup as a randomized block design with five vines per block. Anti-transpirant was applied using a backpack sprayer to upper portion of the canopy to the point of run off at véraison. The berries were then harvested by hand at 18 °Brix and wine making using a standardized wine making protocol at the research winery.

The harvest dates were delayed between the treated and untreated vines. The treated wines were found to have a higher pH, lower titratable acidity, and increased total phenolics. The aroma compound analysis resulted in several significant differences that were noted in the sensory evaluation. In both vintages the control wines were found to be influenced by green, vegetal, and earthy notes while the treated wines were found to be influenced by fruit aromas. These sensory attributes were confirmed by examining the aromatic compounds by PCA. This resulted in the controls being influenced by methoxypyrazines and alcohols and a few esters, compared to treated wines which were influenced by esters and terpenoids.

In conclusion, we were able to show that the application of anti-transpirant was able to dissociate the ripening process of Merlot grapes. Its application decreased sugar production but allowed for aromatic compound production. This demonstrates the potential effectiveness for anti-transpirants to control sugar in grape production to mitigate increased temperatures. These results indicate that further research is necessary to optimize the application timing of the anti-transpirant.

 

1. Van Leeuwen, C. D.-I., A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9, 514
2. Parker, A. K., García de Cortázar-Atauri, I., Gény, L., Spring, J.-L., Destrac, A., Schultz, H., Molitor, D., Lacombe, T., Graça, A., Monamy, C., Stoll, M., Storchi, P., Trought, M. C. T., Hofmann, R. W., & van Leeuwen, C. (2020). Temperature-based grape-vine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agricultural and Forest Meteorology, 285-286, 107902.
3. Di Vaio, C., Marallo, N., Di Lorenzo, R., & Pisciotta, A. (2019). Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy, 9(5), 244.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Kenneth Olejar1, Petra King2, Carmo Vasconcelos3, Elise Montgomery4, Karen Ball5, Stewart Field6

1 Appalchian State University, Department of Chemistry and Fermentation Sciences, Boone, NC, USA
2 Easten Institute of Technology, Department of Viticulture and Wine, Taradale, New Zealand
3 Bragato Research Institute, Blenheim, New Zealand
4 New Zealand Institute of Skills and Technology, Department of Viticulture and Wine, Taradale, New Zealand
5 Easten Institute of Technology, Department of Viticulture and Wine, Taradale, New Zealand
6 New Zealand Institute of Skills and Technology, Department of Viticulture and Wine, Blenheim, New Zealand

Contact the author*

Keywords

dissociatedripenin, glow-alcohol wine, wine sensory, wine aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.