terclim by ICS banner
IVES 9 IVES Conference Series 9 LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Abstract

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations. These genetic groups differ from each other by their ploidy level (diploid or triploid), their hybridization status (auto or- allo-triploid) and their ecological fermentation niches (wine, beer, tequila/bioethanol, etc.). While the genomic landscape of B. bruxellensis is nowadays clearer, its phenotypic diversity is still insufficiently assessed in the light of its genetic diversity. In this work, on one hand, we designed an experiment where 151 B. bruxellensis strains representative of the genetic diversity of the species were phenotypically characterized in five natural beverages (grape must, wine, wort, beer, kombucha wort). Various phenotypic traits were monitored: parameters of growth and fermentation ability, metabolites of technological interest… Signatures of local adaptation were investigated and showed that at least one allotriploid population of B. bruxellensis is specifically adapted to wine environment. Moreover, such large screening allowed the identification of ancestral traits like maltose and maltotriose consumption or nitrate metabolization that were randomly lost in specific populations, an evolutionary phenomenon called relaxed selection. On a second hand, two innovative control methods, continuous UV-C light and pulsed light, were tested on a large collection of B. bruxellensis (>100 strains) and other wine yeast species (14 species). These two stabilization treatments were deemed as particularly efficient on wine yeast spoilers (B. bruxellensis including) using i- a drop-platted system to screen various strains and conditions, and ii- lab-made reactors to stabilize several litters of red wines. Altogether, our results contribute to a deeper understanding of the wine spoiler B. bruxellensis both at the fundamental and applied levels.

 

1. Avramova, M., Cibrario, A., Peltier, E., Coton, M., Coton, E., Schacherer, J., Spano, G., Capozzi, V., Blaiotta, G., Salin, F., Dols-Lafargue, M., Grbin, P., Curtin, C., Albertin, W., Masneuf-Pomarede, I., 2018. Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Sci. Rep. 8, 4136. https://doi.org/10.1038/s41598-018-22580-7
2. Eberlein, C., Abou Saada, O., Friedrich, A., Albertin, W., Schacherer, J., 2021. Different trajectories of polyploidization shape the genomic landscape of the Brettanomyces bruxellensis yeast species. Genome Res. 31, 2316–2326. https://doi.org/10.1101/gr.275380.121
3. Harrouard, J., Eberlein, C., Ballestra, P., Dols‐Lafargue, M., Masneuf-Pomarede, I., Miot-Sertier, C., Schacherer, J., Albertin, W., Ropars, J., 2022. Brettanomyces bruxellensis : Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol. Ecol. 1–22. https://doi.org/10.1111/mec.16439
4. Pilard, E., Harrouard, J., Miot-Sertier, C., Marullo, P., Albertin, W., Ghidossi, R., 2021. Wine yeast species show strong inter- and intra-specific variability in their sensitivity to ultraviolet radiation. Food Microbiol. 100, 103864. https://doi. org/10.1016/j.fm.2021.103864
5. Harrouard, J., Pilard, E., Miot-Sertier, C., Marullo, P., Ferrari, G., Pataro, G., Ghidossi, R., Albertin, W., 2022. Evaluating the Influence of Operational Parameters of Pulsed Light on Wine Related Yeasts: Focus on Inter- and Intra-Specific Variability Sensitivity. SSRN Electron. J. 109. https://doi.org/10.2139/ssrn.4053457

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Jules Harrouard1, Etienne Pilard1, Emilien Peltier1,2, Cecile Miot-Sertier1, Marguerite Dols-Lafargue1,2, Isabelle Masneuf-Pomare-de1,3, Alexandre Pons1,4, Philippe Marullo1,5, Joseph Schacherer6,7, Remy Ghidossi1, Warren Albertin1,2

1. UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140 Villenave d’Ornon, France
2. ENSCBP, Bordeaux INP, 33600, Pessac, France
3. BSA, 33170 Gradignan
4. Tonnellerie Seguin Moreau, Cognac France, France
5. Biolaffort, 11 Rue Aristide Bergès, F-33270 Floirac, France.
6. Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
7. Institut Universitaire de France (IUF), Paris, France

Contact the author*

Keywords

comparative phenotyping, local adaptation, UVC, Pulsed light

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.