terclim by ICS banner
IVES 9 IVES Conference Series 9 PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Abstract

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI). Anthocyanins were concentrated by SPE [1]. Also, the products formed by hy-drogen peroxide oxidation of the same wines were isolated using this method. The correlation between the PSI and the whole visible spectra was studied by multivariate statistical methods, PCA and PLS ana-lysis, to evaluate the spectral regions in the visible spectra most important to the measured PSI. No cor-relation between anthocyanins concentration and the Pinking Susceptibility Index (PSI) was observed contrarily to the colour of wines exposed to oxygen (r = 0.871, p < 0.00005) [5]. The oxidation of wines with hydrogen peroxide resulted in the formation of various compounds. PSI was correlated with com-pounds absorbing in the 400–480 nm region, probably more related to the browning than the pinking phenomenon. The lack of correlation between the PSI and anthocyanins concentration in white wines can be due to the different chemical compositions of white wines that yield various compounds after oxidation that might not be related to the natural wine pinking phenomenon. Acknowledgments We appreciate the financial support provided to CQ-VR – Chemistry Research Centre – Vila Real (UIDB/00616/2020 and UIDP/00616/2020) by FCT – Portugal and COMPETE. The financial support of the project AgriFood XXI (NORTE-01-0145-FEDER-000041) co-financed by the European Regional Development Fund through NORTE 2020 (Programa Operacional Regional do Norte 2014/2020) is also acknowledged.

 

1. Andrea-Silva, J., Cosme, F., Filipe-Ribeiro, L., Moreira, A. S. P., Malheiro, A. C., Coimbra, M. A., … Nunes, F. M. (2014). Origin of the pinking phenomenon of white wines. Journal of Agricultural and Food Chemistry, 62, 5651–5659
2. Du Toit, W., Marais, J., Pretorius, I., & Du Toit, M. (2006). Oxygen in must and wine: A review. South African Journal for Eno-logy and Viticulture, 27, 76–94.
3. Filipe-Ribeiro, L., Andrea-Silva, J., Cosme, F., & Nunes, F. M. (2022). Chapter 15 –Pinking. In A. Morata (Ed.), White wine technology (pp. 187–195). Cambridge, Massachusetts, USA: Academic Press.
4. Simpson, R., Miller, G., & Orr, L. (1982). Oxidative pinking of whites wines: Recent observations. Food Technology in Australia, 34, 46–47.
5. Ana Carolina Gonçalves a, Fabrizio Minute b, Federico Giotto b, Luís Filipe-Ribeiro a, Fernanda Cosme a, Fernando M. Nunes (2022). Is pinking susceptibility index a good predictor of white wines pinking phenomena? Food Chemistry, 386, 132861

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Ana Carolina Gonçalves¹, Fabrizio Minute², Federico Giotto², Luís Filipe-Ribeiro¹, Fernanda Cosme¹, Fernando M. Nunes¹

1. CQ-VR—Chemistry Research Centre—Vila Real, Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
2. Giottoconsulting srl, 31051 Follina

Contact the author*

Keywords

White wines, Pinking, PSI, Monomeric anthocyanins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.