terclim by ICS banner
IVES 9 IVES Conference Series 9 PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Abstract

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI). Anthocyanins were concentrated by SPE [1]. Also, the products formed by hy-drogen peroxide oxidation of the same wines were isolated using this method. The correlation between the PSI and the whole visible spectra was studied by multivariate statistical methods, PCA and PLS ana-lysis, to evaluate the spectral regions in the visible spectra most important to the measured PSI. No cor-relation between anthocyanins concentration and the Pinking Susceptibility Index (PSI) was observed contrarily to the colour of wines exposed to oxygen (r = 0.871, p < 0.00005) [5]. The oxidation of wines with hydrogen peroxide resulted in the formation of various compounds. PSI was correlated with com-pounds absorbing in the 400–480 nm region, probably more related to the browning than the pinking phenomenon. The lack of correlation between the PSI and anthocyanins concentration in white wines can be due to the different chemical compositions of white wines that yield various compounds after oxidation that might not be related to the natural wine pinking phenomenon. Acknowledgments We appreciate the financial support provided to CQ-VR – Chemistry Research Centre – Vila Real (UIDB/00616/2020 and UIDP/00616/2020) by FCT – Portugal and COMPETE. The financial support of the project AgriFood XXI (NORTE-01-0145-FEDER-000041) co-financed by the European Regional Development Fund through NORTE 2020 (Programa Operacional Regional do Norte 2014/2020) is also acknowledged.

 

1. Andrea-Silva, J., Cosme, F., Filipe-Ribeiro, L., Moreira, A. S. P., Malheiro, A. C., Coimbra, M. A., … Nunes, F. M. (2014). Origin of the pinking phenomenon of white wines. Journal of Agricultural and Food Chemistry, 62, 5651–5659
2. Du Toit, W., Marais, J., Pretorius, I., & Du Toit, M. (2006). Oxygen in must and wine: A review. South African Journal for Eno-logy and Viticulture, 27, 76–94.
3. Filipe-Ribeiro, L., Andrea-Silva, J., Cosme, F., & Nunes, F. M. (2022). Chapter 15 –Pinking. In A. Morata (Ed.), White wine technology (pp. 187–195). Cambridge, Massachusetts, USA: Academic Press.
4. Simpson, R., Miller, G., & Orr, L. (1982). Oxidative pinking of whites wines: Recent observations. Food Technology in Australia, 34, 46–47.
5. Ana Carolina Gonçalves a, Fabrizio Minute b, Federico Giotto b, Luís Filipe-Ribeiro a, Fernanda Cosme a, Fernando M. Nunes (2022). Is pinking susceptibility index a good predictor of white wines pinking phenomena? Food Chemistry, 386, 132861

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Ana Carolina Gonçalves¹, Fabrizio Minute², Federico Giotto², Luís Filipe-Ribeiro¹, Fernanda Cosme¹, Fernando M. Nunes¹

1. CQ-VR—Chemistry Research Centre—Vila Real, Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
2. Giottoconsulting srl, 31051 Follina

Contact the author*

Keywords

White wines, Pinking, PSI, Monomeric anthocyanins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.