terclim by ICS banner
IVES 9 IVES Conference Series 9 WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Abstract

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits. Hence it is important to better understand the effect of potential influential factors on the production of these compounds as well as on their precursors in berries. This communication deals with the study of the impact of various terroir components among maturity, vine rootstocks, water and nitrogen status that can influence grape and corresponding wine composition. All experiments used Ugni blanc grapes and were conducted in commercial vineyards in the Cognac region as well as in the GreffAdapt plot (13 rootstocks selected) [2]. Fermentations were performed at laboratory scale in triplicate similar to Cognac base wine elaboration under harvest-like conditions and standardized conditions, where sugars and YAN were all corrected to the same values [3]. Berry composition at harvest, including detailed amino acid profile, and wine fermentative aromas, such as higher alcohols and esters, were determined. All the parameters tested here could be ranked from the most influential to the least on ester concentrations. Under harvest-like conditions, nitrogen status was found to be the most influential followed by maturity level and finally water status, which was the least impactful parameter despite a very warm and dry 2022 grape-growing season. Higher alcohol acetates were about twice higher in the high nitrogen-status vines (+ 30 mg/L of YAN) compared to the control. Under standardized conditions, maturity was found the most impactful although the initial differences in must sugars and nitrogenous compounds were smoothed, and nitrogen status was the least. Indeed, fatty acid ethyl esters differed considerably depending on maturity and their concentrations were the lowest when grapes were picked around 13-15 °Brix compared to the other two more advanced maturities. These findings highlight the importance of maturity as a key parameter for growers to take into consideration for Cognac production.

 

1. Guittin, C., Maçna, F., Sanchez, I., Poitou, X., Sablayrolles, J.-M., Mouret, J.-R., & Farines, V. (2021). Impact of high lipid contents on the production of fermentative aromas during white wine fermentation. Applied Microbiology and Biotechnology, 1-15.
2. Marguerit, E.; Lagalle, L.; Lafargue, M.; Tandonnet, J.-P.; Goutouly, J.-P.; Beccavin, I.; Roques, M.; Audeguin, L.; Ollat, N. Gref-fAdapt: A relevant experimental vineyard to speed up the selection of grapevine rootstocks. In Proceedings of the 21st Inter-national Giesco meeting, Tessaloniki, Greece, 24–28 June 2019; Koundouras, S., Ed.; pp. 204–208.
3. Trujillo, M., Bely, M., Albertin, W., Masneuf-Pomarède, I., Colonna-Ceccaldi, B., Marullo, P., & Barbe, J.-C. (2022). Impact of Grape Maturity on Ester Composition and Sensory Properties of Merlot and Tempranillo Wines. Journal of Agricultural and Food Chemistry, 70(37), 11520-11530.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Julia GOUOT1,2,3*, Mathilde BOISSEAU3, Xavier POITOU3, Nicolas LE MENN1,2, Laura FARRIS1,2, Marine MOREL4, Elisa MARGUE-RIT4 & Jean-Christophe BARBE1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. R&D Department, JAS Hennessy & Co, Cognac, France
4. EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

Aroma compounds, Grape composition, Base wine for Cognac distillation, Ugni blanc

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.