terclim by ICS banner
IVES 9 IVES Conference Series 9 ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Abstract

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019; Sternes and Borneman, 2016). This study was performed to better understand the distribution of the phylogroups in wine and cider. Their population dynamics were determined by qPCR all through wine and cider productions, and the behavior of the strains was analyzed in synthetic wines and ciders. Phylogroups A, B and C were all represented in grape must and throughout the alcoholic fermentation, but on the transition to MLF, only phylogroup A remained at high levels in all wine productions. In the case of cider, phylogroups A, B and C were detected in stable levels during the process. When they were tested in synthetic wine and cider, all phylogroups performed MLF, but with different survival rates depending on the ethanol content. In this sense, ethanol and fermentation kinetics are the main agent that drives the selection of phylogroup A strains in wine, while B and C strains dominates in cider containing less ethanol.

 

1. Campbell-Sills, H., El Khoury, M., Favier, M., Romano, A., Biasioli, F., Spano, G., Sherman, D.J., Bouchez, O., Coton, E., Coton, M., Okada, S., Tanaka, N., Dols-Lafargue, M., Lucas, P.M., 2015. Phylogenomic analysis of Oenococcus oeni reveals specific domestication of strains to cider and wines. Genome Biol. Evol. 7, 1506–1518. https://doi.org/10.1093/gbe/evv084
2. Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Fall, A., Daube, G., Coton, E., 2017. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 93, 1–16. https://doi.org/10.1093/femsec/fix048
3. Lonvaud-Funel, A., 1999. Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwen-hoek, Int. J. Gen. Mol. Microbiol. 76, 317–331. https://doi.org/10.1023/A:1002088931106
4. Lorentzen, M.P., Campbell-Sills, H., Jorgensen, T.S., Nielsen, T.K., Coton, M., Coton, E., Hansen, L., Lucas, P.M., 2019. Expanding the biodiversity of Oenococcus oeni through comparative genomics of apple cider and kombucha strains. BMC Genomics 20, 1–15. https://doi.org/10.1186/s12864-019-5692-3
5. Sternes, P.R., Borneman, A.R., 2016. Consensus pan-genome assembly of the specialised wine bacterium Oenococcus oeni. BMC Genomics 17, 1–15. https://doi.org/10.1186/s12864-016-2604-7

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aitor Balmaseda1,2,3, Marc Lorentzen1,2, Lucie Dutilh1,2, Rémi Bauduin⁴, Hugues Guichard⁴, Séverine Ollivier4, Cécile Miot-Sertier1,2, Patrick M. Lucas1,2

1. Univ. Bordeaux, INRAE, Bordeaux INP, UMR 1366, OENO, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, F-33170 Gradignan, France
3. Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Grup de Biotecnologia Enològi-ca, C/ Marcel⟨lí Domingo 1, 43007 Tarragona, Catalonia, Spain
4. Institut Français des Produits Cidricoles (IFPC), Domaine de la Motte, Le Rheu, 35653, France

Contact the author*

Keywords

Oenococcus oeni, Malolactic fermentation, Population dynamics, phylogroups

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4