GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Evaluation of the agronomic performance of cvs. Syrah and tempranillo when grafted on a new series of rootstocks developed in spain

Evaluation of the agronomic performance of cvs. Syrah and tempranillo when grafted on a new series of rootstocks developed in spain

Abstract

Context and purpose of the study ‐ The choice of an adequate rootstock is a key tool to improve the performance of grapevine varieties in different ‘terroirs’, as rootstocks confer adaptation to soil characteristics such as salinity, acidity, lime content or drought. Moreover, it is well‐known that rootstocks also have a significant influence on the growth and vegetative cycle of the plants and, consequently, on yield and grape quality, and they can be a relevant adaptation tool of viticulture in a changing climate. Therefore, it is essential to have a sufficient supply of rootstock varieties in order that the winegrowers can choose the best suited to the different growing conditions. However, since the beginning of the 20th century, the development of new grapevine rootstocks has been very limited, despite growers’ needs have changed dramatically. The objective of this study was to evaluate the agronomic performance of cvs. Syrah and Tempranillo when grafted on eight new rootstocks belonging to the RG‐Series, obtained by the Spanish nursery Vitis Navarra.

Material and methods ‐ The evaluation was performed during 4 consecutive seasons in a vineyard located in Miranda de Arga (Navarra, Spain), where Syrah and Tempranillo are grown grafted on 10 different rootstocks (eight new rootstocks and the two parental, 41B and 110R). The vineyard was planted following a completely randomized experimental design, with three replicates of ten vines. During the study period (2015‐2018), parameters related to growth, yield, and industrial and phenolic quality were collected in order to evaluate their performance.

Results ‐ The different rootstocks significantly modified growth, yield and quality parameters in both varieties, some showing very promising features for higher yielding vineyards, and some not so productive but interesting for higher quality grape production. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Diana MARÍN (1), Rafael GARCÍA (2), Javier ERASO (2), Jorge URRESTARAZU (1), Carlos MIRANDA (1), José Bernardo ROYO (1), Francisco Javier ABAD (1,3), Luis Gonzaga SANTESTEBAN (1)

(1) Dept. of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra, Campus Arrosadia, 31006 Pamplona, Navarra, Spain
(2) Vitis Navarra Nursery, Carretera Tafalla km 18, 31251 Larraga, Navarra, Spain
(3) INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain

Contact the author

Keywords

grapevine, growth, yield, industrial quality, phenolic quality

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Historical zoning in the world

The study of the interaction between vineyards and the environment to establish the grapevines in the appropriate places has been applied in wine science for 5000 years. Advances in the field of the zoning have not been uniform in time, and have occupied a preferential place in the contributions of Roman writers of the 1st Century AC, the contemplations of Tokay (1700) and Porto (1756) and works of the second half of the 20th century. Zoning practices today integrate multidisciplinary methodologies (viticulture, enology, soils, climatology, cartography, statistics, computer science) and require further development for future application.

Isotopes to distinguish production system in Brazilian viticulture

Organic viticulture integrates practices aimed at foresting positive relationships among, vines, soil, and climate, with a focus on sustainability, social responsibility, and environmental protection. To safeguard production integrity, regulatory bodies worldwide conduct organic certifications in accordance with relevant regulations. Considering that agriculture practices influence the nitrogen, carbon and oxygen isotope composition, the study aimed to investigate the response of these isotopes in grape must cultivated by organic, biodynamic and conventional methods to distinguish between production systems.

Evaluation des aptitudes œnologiques des raisins rouges avec l’étude de certains nouveaux indices de maturité phénolique

Pour obtenir des vins d’une certaine gamme, il faut connaître les paramètres liés à la composition de la baie et introduire non seulement les paramètres classiques, c’est-à-dire sucres et acidité, mais aussi les paramètres qui tiennent compte

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.