terclim by ICS banner
IVES 9 IVES Conference Series 9 INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Abstract

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

Three major compounds, 2-acetyl-1-pyrroline (APY), 2-acetyltetrahydropyridine (ATHP) and 2-ethyltetrahydropyridine (ETHP), have been identified as responsible for mousiness in wines. A particularity of these compounds is that they are prone to tautomerism and can coexist in several forms. Moreover, the nitrogen atom in the heterocyclic ring can be protonated under specific conditions, i.e. with pH lower than pKa, inducing a positive charge and, as a consequence, an increase of polarity and a loss of volatility of the molecule.

To date quantification data reported in the literature are limited due to analytical issues related to the nature of these compounds. To fill the gap and later understand the parameters influencing mousiness, the objective of this study was to develop a simple and effective method to simultaneously determine trace levels of these three mousy N-heterocycles in wines. Therefore, a stir bar sorptive extraction (SBSE) followed by GC-MS analysis was developed (1).

Firstly, both previously reported tautomers of ATHP (2), 2-acetyl-1,4,5,6-tetrahydropyridine and 2-acetyl-3,4,5,6-tetrahydropyridine were identified, unlike to APY and ETHP. The extraction conditions were then optimized paying particular attention to the pH of the sample. The performance of the developed method was evaluated on white, rosé and red wines and the limits of detection and quantification of the method are lower than previously published concentrations in spoiled wine.

The method was then applied to provide quantitative data by analyzing 6 control wines and 68 wines produced without added sulfites. ETHP was detected in almost all wines produced with limited use of SO₂. ATHP was detected in almost all wines suspected of mousiness whereas APY was only detected in few cases. This method will provide a support for further studies aimed at understanding the phenomena that influence the occurrence of mousy off-flavor and the oenological parameters that modulate its expression.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Céline Franc¹, Daiki Kiyomichi², Pierre Moulis1,3, Laurent Riquier¹, Patricia Ballestra¹, Stéphanie Marchand¹, Sophie Tempère1 and Gilles de Revel¹

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33140 Villenave d’Ornon, France
2. Institute for Future Beverages, Kirin Holdings Company, Limited, 4-9-1 Jonan, Fujisawa, Kanagawa 251-0057, Japan
3. Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author*

Keywords

mousiness, N-heterocycles, quantification, SBSE-GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵