terclim by ICS banner
IVES 9 IVES Conference Series 9 OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Abstract

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

Based on these observations, the present work aims at proposing an optimized method to extract and quantify the potential of glutathione from white wine lees and yeast derivatives. In this context, several parameters, such as the type of solvent, the extraction time and the solid-liquid ratio, were investigated. For each matrix, the optimization study was carried out using the Box-Behnken Design (3-factor, 3-level) based on 33 factorial experiments. The results showed that the main factor influencing the extraction efficiency was the ethanol concentration. After development and validation of a liquid chromatography−high resolution mass spectrometry quantitation method, GSH and GSSG were assayed in various white wine lees and yeast derivatives in order to investigate the influence of oenological parameters on their content. The results showed differences in concentration depending on the grape varieties and strains used.

For the first time, this study focused on the use of design of experiments and analytical techniques to highlight the presence of glutathione in wine lees and yeast derivatives. Moreover, this research offers promising perspectives for a better understanding of lees antioxidant potential during wine aging. More generally, by-products such as lees can provide new natural products to the food industry, with safer and better antioxidant qualities against oxidative damage.

 

1. Foyer, C. and Noctor, G., Plant Cell and Environemental, 28(8), p. 1056-1071, 2005 
2. Pons, A. et al., American Journal of Enology and Viticulture, 66(2), p. 187-194, 2015
3. Lavigne, V. and Dubourdieu, D., In 13th International Enology Symposium, 2002 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Delphine Winstel1,2, Axel Marchal1,2 and Claudia Nioi1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Glutathione, wine lees, RSM design, quantification

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).