OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

Abstract

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood. However, the role of S- N- congaing compounds, like glutathione (GSH) and other peptides, as a source of reductant in many oxidation reactions protecting against heavy metals toxicity, or lipids and polyphenols oxidation as ROS-scavenger is today very well established. GSH is also reported being an important antioxidant, reacting as nucleophile substance that conjugates straightforwardly with reactive electrophiles resulting in foods and beverages chemical oxidative stability. It has been shown that, GSH efficiency against wines sensory oxidative stability is related to wines antioxidant metabolome consisting of N- and S- containing compounds like amino acids, aromatic compounds and peptides. These compounds present a strong nucleophilic character and their reactivity with wines electrophiles such as oxidized polyphenols, suggests the formation of stable adducts presenting lower oxidative potential. We consider that the knowledge behind the chemical composition of wines antioxidant metabolome is a key factor to estimate wines aging potential. 

In that respect, the present study introduces an original determination of the pool of nucleophilic compounds that can react with quinones in wine acidic conditions. One step derivatization of nucleophiles has been realized in wines with no pH adjustment by using 4‑methyl‑1,2‑benzoquinone (Q) as a nucleophilic probe. LC‑MS‑QToF analysis of 92 white followed by Multivariate analysis (PLS‑DA) and Wilcoxon test allowed to isolate up to 141 putative nucleophilic compounds. Only 20 of these compounds were detected without derivatization, showing an increase in detection level by quinone trapping, especially for thiols. Moreover, annotation using online database (Oligonet, Metlin and KEGG) as well as elementary formula determined by isotopic profile and MS² analysis allowed to show an important proportion of amino acids and peptides and to identify 4 compounds (GSH, Cys, homocysteine and Pro). The majority of the putative peptides can contain amino acids that are known to have antioxidant properties (Val, Leu, Ile, Pro, Trp, Cys and Met). 

 

These results show that derivatization of wines using Q allows to enhance thiol detection levels and to determine a pool of untargeted nucleophilic compounds that can be part of wines antioxidant metabolome

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Remy Romanet, Florian Bahut, Maria Nikolantonaki, Regis Gougeon

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000 Dijon, France

Contact the author

Keywords

LC-QToF-MS, Nucleophilic compounds, Untargeted analysis, White wines oxidative stability 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Evaluation de différents clones du Chardonnay pendant la maturation dans un terroir viticole du Friuli-Venezia Glulia (Nord-Est de l’Italie)

La diffusion récente et “explosive” du Chardonnay dans pratiquement toutes les zones de culture viticole du monde a fait penser, à tort, que cette variété s’adapte facilement à toutes les conditions pédo-climatiques ou presque. Cette thèse a été confirmée par la grande faculté d’adaptation dont a fait preuve le vignoble et par la popularité dont jouit le vin auprès des consommateur du monde entier.

Synthesis of the contribution of the Giesco (group of international experts of vitivinicultural systems for cooperation) to the study of terroirs

Since 1998, the GiESCO (previously named GESCO: Groupe d’Etude des Systèmes de COnduite de la vigne) has provided the scientific community with relevant contributions to the study of terroirs. Here is a synthesis of the main terroir-related fields and the major ideas the GiESCO has developed: Basic Terroir Unit and climate, Vine Ecophysiology and microclimate – moderate drought, Vineyard heterogeneity and new technologies, Viticultural Terroir Unit and canopy management, Terroir – Territory and man.