terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Abstract

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

The present study has two aims: we intended to provide for the first time a detailed characterization of the volatile chemical and phenolic composition and the colorimetric parameters of the three mono-varietal Lambrusco PDOs “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” and we wanted to investigate the influence of the three production methods considered, Charmat, Classico and Sur lie on relevant aroma compounds.

Volatile composition was investigated thanks to GC-MS coupled with different extraction techniques (SPE and SPME). Total polyphenols and anthocyanins were evaluated with specific enzymatic assays, tannins with methyl cellulose precipitable assay. CIElab parameters were studied with a reflectance colorimeter.

We found that the three types wine were differentiated by many volatile compounds. Lambrusco Grasparossa showed higher content of cyclic terpenes and sulphur compounds, Salamino higher content of linalool and 1,4-cineole, while Sorbara showed quite high levels of β-myrcene, 1,8-cineole, TDN, vitispirane and cis-3-hexenol. Fermentation-derived compounds showed a wide intra-varietal variability.

The type of secondary fermentation method (Charmat, Classico or Sur lie) can impact significantly Lambrusco volatile composition, highlighting the importance of various complex phenomena including aging period, adsorption of volatile compounds on yeast lees as well as formation of volatile compounds from amino acids.

With regard to the content of total polyphenols, tannins and anthocyanins, Lambrusco di Sorbara was characterised by a lower content than Grasparossa and Salamino, which was also reflected in the colorimetric parameters.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Riccardo Bicego¹, Davide Slaghenaufi¹ And Maurizio Ugliano1*

1. University of Verona, Department of Biotechnology, Villa Lebrecht, via della Pieve 70, San Pietro in Cariano, 37029, Italy

Contact the author*

Keywords

Sparkling red wines, Charmat, Champenoise, Varietal characterization

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

Assyrtiko is a rare ancient grape variety that constitutes one of the most popular in Greece. The objective of the current research was to evaluate indigenous Saccharomyces cerevisiae isolates as fermentation starters and also test the possible strain impact on volatile profile of Assyrtiko wine. 163 S. cerevisiae isolates, which were previously selected from spontaneous alcoholic fermentation, were identified at strain level by interdelta-PCR genomic fingerprinting. Yeasts strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized Assyrtiko grape must.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).