terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Abstract

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

Eight commercial oak tannins were characterized by a combination of analytical approaches, Polyphe-nols were analyzed using the official OIV method, UV spectrophotometry, UPLC-UV-MS analysis be-fore and after acidic methanolysis, and HPLC-SEC-UV. Neutral sugars and polyols were determined as alditol acetates by GC-FID analysis, before and after hydrolysis. Protein content was estimated by the Kjeldahl method. Finally, samples were compared by a non-targeted metabolomic approach based on UHPLC−HRMS/MS.

Gravimetric analysis, absorbance values at 280 nm, and the quantities of ellagic acid released by methanolysis revealed some differences between samples, indicating variations in their tannin composition. This was confirmed by HPLC-SEC-UV analysis evidencing differences in tannin size distribution, particularly in larger polymer content.

All samples contained significant quantities of sugars, and in particular xylose, mostly found in the linked form, and of quercitol, a polyol marker of oak origin. These compounds contributed to up to 25% of the whole extract composition, the proportions of free and combined sugars and polyols also showing large variations between tannins. The protein content was very low, generally representing less than 1% of the mass. Non targeted UPLC-HRMS analysis detected major ellagitannins such as vescalagin, castalagin, and ro-burins A-E, but also a large number of derivatives as well as other molecules such as lignans and quercotriterponosides, and highlighted large differences between samples. Tannin extracts also contained aldehydes (HMF, furfural, syringaldehyde, sinapaldehyde, vanillin) in variable quantities.

This work demonstrates the variability in the composition of commercial oak tannin extracts, likely to impact their properties, and emphasizes the need for detailed multi-method characterization in the frame of quality control and selection of tannins for specific applications.

 

1. Simón, B. F. de; Cadahía, E.; Conde, E.; García-Vallejo, M. C. Ellagitannins in Woods of Spanish, French and American Oaks. 1999, 53 (2), 147–150. https://doi.org/doi:10.1515/HF.1999.024.
2. Moutounet, M.; Souquet, J.-M.; MEUDEC, E.; Leaute, B.; DELBOS, C.; Doco, T. Analyse de La Composition de Tanins Oenolo-giques. Rev. Fr. Oenologie 2004, No. 208, 22–27.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Hélène Hallea,² , Kevin Pascotto³ , Aude Watrelot1,2,4, Aurélie Roland1,2, Emmanuelle Meudec1,2, Pascale Williams 1, Stéphanie Car-rillo 1, Bertand Robillard 3, Nicolas Sommerer 1,2, Céline Poncet-Legrand 1, Véronique Cheynier 1,2

1. Univ. Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France
2. INRAE, PROBE research infrastructure, PFP polyphenols analysis facility, 34070 Montpellier, France
3. Institut Œnologique de Champagne, Epernay, France
4. Iowa State University, Department of Food Science and Human Nutrition, Ames, USA

Contact the author*

Keywords

Oak extract, Ellagitanins, oses and polyols, HRMS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.