terclim by ICS banner
IVES 9 IVES Conference Series 9 PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

Abstract

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

This work merges our 10-years’ studies¹ on bentonite along with information from the literature to design a study-model feasible to optimize the effects of adjuvants by maximizing the impact on targeted compounds, while minimizing the one on desirable wine components. The boosting was simply based on the frequently unintended uses of oenological adjuvants by winemakers based also on some lacking in the EU regulations, which produces jeopardized main and side-effects, as the ones by bentonite are emblematic.

Indeed, there is no EU regulated upper limit for the addition of bentonite during the winemaking process, but the International Oenological Codex establishes the properties of the oenological bentonites amending the three classes of Ca-, Na-, and Na-activated bentonite.

Our studies demonstrated that the from-bentonite enrichment in wine cations results from the clay Cation Exchange Capacity (CEC) and from the pH, ethanol content and ionic strength which also impact on the residual card-house clay structure that is an important property for deproteinization. Indeed, for the removal of hazing forming proteins (b-glucanases, thaumatin-like proteins, chitinases) clay properties as CEC, Swell Index (SI), and Specific Surface Area (SSA) as well as wine pH are more impacting than the bentonite dose.

Considering adjuvant side-effects, bentonite can remove phenolic compounds so to modify wine colour and astringency. About terpenic wines, double addition to must for clarifying and to wine for fining outlined less removal than to the solely wine treatment. Removal of aglycones by low doses and of glycosylated terpenols especially by Ca-bentonite were predicted by RSM. For the fermentative aroma compounds, adsorption intensity and capacity more depended on the characteristics of the bentonite (SSA and CEC) than on the properties of the substances: the main removal is an indirect effect of deproteinization, while a direct adsorption can be described by the Freundlich equation for only a few compounds.

 

1. Lambri M., Colangelo D., Dordoni R., Torchio F., De Faveri D.M. (2016). Innovations in the Use of Bentonite in Oenology: Interactions with Grape and Wine Proteins, Colloids, Polyphenols and Aroma Compounds, Chapter 18 in (Ed. Morata A. and Loira I., Intech Publisher) book: Grape and Wine Biotechnology. p. 381-400. ISBN 978-953-51-2692-8.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Milena Lambri*1, Roberta Dordoni1, Mario Gabrielli1

1. Department for Sustainable Food Process – DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmese, 84 – 20122 Piacenza (Italy)

Contact the author*

Keywords

Oenological practices, Precision oenology, Adjuvant optimization, Bentonite, Wine resi-lience

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.