GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Heat waves and drought stress impact grapevine growth and physiology

Heat waves and drought stress impact grapevine growth and physiology

Abstract

Context and purpose of the study – Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world. Although the effect of these factors on plant physiology and growth has been investigated separately, little is yet known about their interactions and the variability of these effects among genotypes and phenological stages. The main aim of this study was to evaluate the response of two grape varieties to heat and drought stress and subsequent recovery at different phenological stages.

Material and methods ‐ Pot‐grown Cabernet Sauvignon and Riesling plants were moved to environmentally‐controlled growth chambers at bloom, pre‐veraison and veraison in 2018. For each phenological stage, a different group of plants were used to avoid cumulative treatment effects. After 7 days of acclimation in the growth chambers, different treatments were imposed: control (no stress), water stress, heat stress (10°C above control), and combined water and heat stress. Growth, gas exchange, leaf water potential, photosystem electron transport and energy dissipation were measured in both young and mature leaves of 6 plants per treatment before the stress episode, during 7 days of stress, and through 7 days of recovery.

Results ‐ At bloom, water stress decreased transpiration, stomatal conductance and photosynthesis in both varieties. Combined stress decreased gas exchange only in Riesling. During pre‐veraison, heat stress reduced leaf water potential, gas exchange and chlorophyll fluorescence, both in young and mature leaves. Combined stress drastically decreased most of the parameters compared to control plants. This decline was higher in Riesling than in Cabernet Sauvignon. During veraison, drought was the dominant factor that affected most parameters. Additionally, heat stress exacerbated the drought stress effect on the physiological parameters. During the recovery periods, no significant differences were found among treatments in any parameter, indicating that both varieties were able to recover fully from the imposed stresses. Water stress and combined stress decreased shoot length, number of main leaves, lateral leaves and total leaf area in both varieties.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Esther HERNÁNDEZ‐MONTES (1), Yun ZHANG (1,2), Noorani BARKAT (1), Markus KELLER(1)

(1) Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA 99350, USA
(2) Ste. Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350, USA

Contact the author

Keywords

high temperature, irrigation, leaf area, gas exchange, leaf age

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of application of kaolin and pinolene on grape berry cell death, berry shrinkage, and ethanol accumulation

Cell death in Vitis vinifera L. berries late in ripening and berry shrinkage (loss of mass) can decrease yield and reduce grape quality in cultivars such as Cabernet Sauvignon

Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Priorat and Montsant Appellations of Origin are located in the south of Catalonia (North‐East Spain), under severe Mediterranean climatic conditions

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Natural glycolipids for the control of spoilage organisms in red wine

A natural glycolipid mixture obtained from the edible mushroom dacryopinax spathularia (“glycolipids”) is known to be an effective and approved antimicrobial treatment in non-alcoholic beverages at concentrations ranging from 5 – 100 mg/l. It has found a place alongside DMDC for the provision of microbial stability in soft drinks. These properties make the natural and sustainably produced glycolipids a promising candidate for the supplementation or replacement of SO2 in different winemaking processes.

Soil and Climate Interactions with Grapevines

To test the hypothesis that soil type plays a minor role relative to that of vine vigor in the determination of yield, fruit composition and wine sensory attributes, 5 Chardonnay vineyards in the Niagara