OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Exploring multisensory interactions through the study of astringency diversity of mono-varietal Italian red wines

Exploring multisensory interactions through the study of astringency diversity of mono-varietal Italian red wines

Abstract

According to the OIV Focus 2017 estimating the vine varieties distribution in the world, Italy is the richest grape producing country in terms of varieties. This rich biodiversity translates into a wide sensory diversity of the wines that was never systematically investigated. The D-Wines (Diversity of Italian Wines) project, is aimed to start filling this gap by getting a wide chemical and sensorial multi-parametric dataset about 11 mono-varietal red wines (Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Nerello Mascalese, Primitivo, Raboso, Sagrantino, Sangiovese, Teroldego) representative of the Italian territory and by focusing on tannins and astringency.

In this frame, the astringency diversity of a set of 112 wines belonging to the 11 varieties, was investigated by sensory analysis adopting a multi-steps analytical strategy. A first experiment by sorting, allowed to reduce (AHC analysis) the sample-set to 77 wines, representative of the intra-varietal similarities and diversities in terms of astringency sub-qualities. A second experiment by descriptive analysis was performed on the selected wines and allowed to obtain their sensory profiles (astringency, taste, odor). Both intra- and inter-varietal significant differences of each sensory variable was tested by ANOVA (p<0.05).

Quantitative data concerning astringency were analyzed through Discriminant Analysis (DA).

Results showed that the 6 variables describing astringency (drying, harsh, unripe, dynamic, complex, surface smoothness; Gawel et al., 2000) allowed a good discrimination (F1+F2: 78 %) of the wines according to the grape variety. Factor scores of each sample allowed their reclassification into the variety for which the probability of belonging was the greatest. The 57 % of the wines resulted correctly reclassified, with Nebbiolo showing the highest value (83 %) and Nerello Mascalese the lowest (0 %).

The quantitative data concerning the well reclassified wines were used to develop “Astringency spectra”, models representing the astringency features of each mono-varietal wine.

These “Spectra” were compared to those of the corresponding deodorized wines in order to investigate the multisensory interactions between astringency, taste and odor variables. Several significant correlations were detected (e.g. R2>0.5: drying and dynamic, drying and dehydrated fruit, complex and spicy were positively correlated while harsh and acid were negatively correlated).

Acknowledgements:

MIUR project N. 20157RN44Y. Other components of D-Wines project: P. Arapitsas, A. Gambuti, S. Giacosa, M. Marangon, A. Ricci, L. Rolle, S. Río Segade, B. Simonato, G. Tornielli, A. Versari, S. Vincenzi

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Paola Piombino (1), E. Pittari (1), M. Ugliano (2), A. Curioni (3), F. Mattivi (4,5), V. Gerbi (6), G.P. Parpinello (7), L. Moio (1)

(1) Department of Agricultural Sciences, University of Naples Federico II, Division of Vine and Wine Sciences, University of Naples Federico II – V.le Italia s.n.c. 83100 – Avellino Italy
(2) Department of Biotechnology, University of Verona, It
(3) Department of Agronomy, University of Padova, It
(4) Department of Food Quality and Nutrition, Fondazione Edmund Mach, It
(5) Center Agriculture Food Environment, University of Trento, It
(6) Department of Agricultural, Forestry and Food Sciences, University of Torino, It
(7) Department of Agricultural and Food Sciences, University of Bologna, It

Contact the author

Keywords

mouthfeel and odor, diversity, interactions, chemometrics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Studying heat waves effects on berry composition: first outlooks and challenges

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes).

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.