GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Abstract

Context and purpose of the study ‐ Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production and final concentrations of most wine aroma compounds even though many compounds in wines (aromatic and non‐aromatic) are substantially transformed during fermentation and wine ageing. The aim of this study was to investigate if a common pattern in grape/wine flavour plasticity related to ripening exists irrespective of a grape growing region. A further aim was to identify and highlight compounds present in Shiraz grapes and wines in which plasticity is directly related to grape ripening and is consistent over several vintages.

Material and methods ‐ Commercial vineyards of Shiraz were chosen in two Australian wine geographical indication (GI) regions: Griffith (warm to hot climate) and Orange (temperate to temperate‐warm climate). In these vineyards, own rooted vines were grown under drip irrigation, and trellised to a sprawling training system and in vertical shoot positioning for Orange. Sequential harvests were performed using berry sugar accumulation as a physiological indicator of grape maturity. At each harvest date, triplicates of 100 berries were collected and frozen in liquid nitrogen in the field for later chemical analyses. Approximately 60 kg of grape per replicate were randomly harvested at each harvest date and small scale vinifications carried out. Amino acids in grapes were analysed by high performance liquid chromatography (HPLC) coupled to fluorescence detector. Grape volatiles analyses were performed with gas chromatography coupled to mass detection (GC‐MS). Juice was analysed for set of parameters relating to the technical maturity of grapes (total soluble solids, titratable acidity and pH) and yeast assimilable nitrogen was measured. Wine aromatic compounds were quantitated by HS‐SPME‐GC‐MS. Descriptive sensory evaluation with predefined descriptors was conducted approximately six months after bottling.

Results ‐ Irrespective of the macro and meso climates, differences in both grape and wine chemical analyses and wine sensory description produced a clear separation of samples according to the harvest stage. Shiraz wines from the first harvest (H1) were associated with red fruit descriptors and higher perception of acidity. Wines from the third harvest (H3) were correlated with dark fruit characters and a higher alcohol. Later harvest dates resulted in higher concentrations of some amino acids in the Shiraz grapes, with higher alcohol acetates, ethyl esters (ethyl propanoate and ethyl butyrate) of short chain fatty acids and dimethyl sulphide in the wines. Conversely, concentrations of (Z)-3‐hexenol, ethyl isobutyrate, ethyl leucate and ethyl dihydrocinammate were lower in these wines compared to earlier harvest dates. Observed trends were significant and consistent across two vintages and two different GIs. From the plateau of berry sugar accumulation, no direct nexus was observed between berry sugar concentration and grape and wine flavour evolution. This study also demonstrated a common evolution of Shiraz grapes, influencing the chemical and sensory properties of the subsequent wine.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Katja ŠUKLJE (1,3), Guillaume ANTALICK (1,4), Campbell MEEKS (1), John BLACKMAN (1,2), Alain DELOIRE (1,5), Leigh SCHMIDTKE (1,2)

(1) National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
(2) School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
Present addresses: 3 Hacquetova 17, 1000 Ljubljana,
(4) Wine research centre, University of Nova Gorica, Glavni trg 8, 5271 Vipava, Slovenia
(5) Montpellier SupAgro‐IHEV‐BE, 2 Place Pierre Viala, 34060 Montpellier, France

Contact the author

Keywords

Grapevine, Australia, Shiraz, warm and temperate climates, sequential harvests, fruit and wine composition, sensory analyses

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The albarizas and the viticultural zoning of Jerez­-Xérès-Sherry and Manzanilla-Sanlúcar de Barrameda registered apellations of origin (Cadiz, Spain)

Le terme ”Albariza” (du latin “albus“, blanc) déterminait à l’origine un type particulier du terrain calcaire, mais à présent il sert aussi à définir les sols et la bibliographie géologique actuelle le cite également pour de roches sédimentaires originaires du Neogene Betic.

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.

Freeze-thaw treatment to enhance phenolic ripening and tannin oxidation of seeds

Phenolic ripening represents a major interest for quality wine producers. Nevertheless, climatic or genotypical limitations can often prevent optimal maturation process. During winemaking seeds can be easily separated and technologically processed to improve their quality.