GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Abstract

Context and purpose of the study ‐ Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production and final concentrations of most wine aroma compounds even though many compounds in wines (aromatic and non‐aromatic) are substantially transformed during fermentation and wine ageing. The aim of this study was to investigate if a common pattern in grape/wine flavour plasticity related to ripening exists irrespective of a grape growing region. A further aim was to identify and highlight compounds present in Shiraz grapes and wines in which plasticity is directly related to grape ripening and is consistent over several vintages.

Material and methods ‐ Commercial vineyards of Shiraz were chosen in two Australian wine geographical indication (GI) regions: Griffith (warm to hot climate) and Orange (temperate to temperate‐warm climate). In these vineyards, own rooted vines were grown under drip irrigation, and trellised to a sprawling training system and in vertical shoot positioning for Orange. Sequential harvests were performed using berry sugar accumulation as a physiological indicator of grape maturity. At each harvest date, triplicates of 100 berries were collected and frozen in liquid nitrogen in the field for later chemical analyses. Approximately 60 kg of grape per replicate were randomly harvested at each harvest date and small scale vinifications carried out. Amino acids in grapes were analysed by high performance liquid chromatography (HPLC) coupled to fluorescence detector. Grape volatiles analyses were performed with gas chromatography coupled to mass detection (GC‐MS). Juice was analysed for set of parameters relating to the technical maturity of grapes (total soluble solids, titratable acidity and pH) and yeast assimilable nitrogen was measured. Wine aromatic compounds were quantitated by HS‐SPME‐GC‐MS. Descriptive sensory evaluation with predefined descriptors was conducted approximately six months after bottling.

Results ‐ Irrespective of the macro and meso climates, differences in both grape and wine chemical analyses and wine sensory description produced a clear separation of samples according to the harvest stage. Shiraz wines from the first harvest (H1) were associated with red fruit descriptors and higher perception of acidity. Wines from the third harvest (H3) were correlated with dark fruit characters and a higher alcohol. Later harvest dates resulted in higher concentrations of some amino acids in the Shiraz grapes, with higher alcohol acetates, ethyl esters (ethyl propanoate and ethyl butyrate) of short chain fatty acids and dimethyl sulphide in the wines. Conversely, concentrations of (Z)-3‐hexenol, ethyl isobutyrate, ethyl leucate and ethyl dihydrocinammate were lower in these wines compared to earlier harvest dates. Observed trends were significant and consistent across two vintages and two different GIs. From the plateau of berry sugar accumulation, no direct nexus was observed between berry sugar concentration and grape and wine flavour evolution. This study also demonstrated a common evolution of Shiraz grapes, influencing the chemical and sensory properties of the subsequent wine.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Katja ŠUKLJE (1,3), Guillaume ANTALICK (1,4), Campbell MEEKS (1), John BLACKMAN (1,2), Alain DELOIRE (1,5), Leigh SCHMIDTKE (1,2)

(1) National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
(2) School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
Present addresses: 3 Hacquetova 17, 1000 Ljubljana,
(4) Wine research centre, University of Nova Gorica, Glavni trg 8, 5271 Vipava, Slovenia
(5) Montpellier SupAgro‐IHEV‐BE, 2 Place Pierre Viala, 34060 Montpellier, France

Contact the author

Keywords

Grapevine, Australia, Shiraz, warm and temperate climates, sequential harvests, fruit and wine composition, sensory analyses

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

How to improve the mouthfeel of wines obtained by excessive tannin extraction

Red wines felt as astringent and bitter generally show high content of tannins due to grape phenolic compounds’ extraction in the maceration process. Among different enological practices, mannoproteins have been shown to improve the mouthfeel of red wines (1) and the color (2,3). In this work, we evaluated the effect of mannoproteins on the mouthfeel profile of Sangiovese wines obtained by excessive tannin extraction.

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.