GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Abstract

Context and purpose of the study ‐ Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production and final concentrations of most wine aroma compounds even though many compounds in wines (aromatic and non‐aromatic) are substantially transformed during fermentation and wine ageing. The aim of this study was to investigate if a common pattern in grape/wine flavour plasticity related to ripening exists irrespective of a grape growing region. A further aim was to identify and highlight compounds present in Shiraz grapes and wines in which plasticity is directly related to grape ripening and is consistent over several vintages.

Material and methods ‐ Commercial vineyards of Shiraz were chosen in two Australian wine geographical indication (GI) regions: Griffith (warm to hot climate) and Orange (temperate to temperate‐warm climate). In these vineyards, own rooted vines were grown under drip irrigation, and trellised to a sprawling training system and in vertical shoot positioning for Orange. Sequential harvests were performed using berry sugar accumulation as a physiological indicator of grape maturity. At each harvest date, triplicates of 100 berries were collected and frozen in liquid nitrogen in the field for later chemical analyses. Approximately 60 kg of grape per replicate were randomly harvested at each harvest date and small scale vinifications carried out. Amino acids in grapes were analysed by high performance liquid chromatography (HPLC) coupled to fluorescence detector. Grape volatiles analyses were performed with gas chromatography coupled to mass detection (GC‐MS). Juice was analysed for set of parameters relating to the technical maturity of grapes (total soluble solids, titratable acidity and pH) and yeast assimilable nitrogen was measured. Wine aromatic compounds were quantitated by HS‐SPME‐GC‐MS. Descriptive sensory evaluation with predefined descriptors was conducted approximately six months after bottling.

Results ‐ Irrespective of the macro and meso climates, differences in both grape and wine chemical analyses and wine sensory description produced a clear separation of samples according to the harvest stage. Shiraz wines from the first harvest (H1) were associated with red fruit descriptors and higher perception of acidity. Wines from the third harvest (H3) were correlated with dark fruit characters and a higher alcohol. Later harvest dates resulted in higher concentrations of some amino acids in the Shiraz grapes, with higher alcohol acetates, ethyl esters (ethyl propanoate and ethyl butyrate) of short chain fatty acids and dimethyl sulphide in the wines. Conversely, concentrations of (Z)-3‐hexenol, ethyl isobutyrate, ethyl leucate and ethyl dihydrocinammate were lower in these wines compared to earlier harvest dates. Observed trends were significant and consistent across two vintages and two different GIs. From the plateau of berry sugar accumulation, no direct nexus was observed between berry sugar concentration and grape and wine flavour evolution. This study also demonstrated a common evolution of Shiraz grapes, influencing the chemical and sensory properties of the subsequent wine.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Katja ŠUKLJE (1,3), Guillaume ANTALICK (1,4), Campbell MEEKS (1), John BLACKMAN (1,2), Alain DELOIRE (1,5), Leigh SCHMIDTKE (1,2)

(1) National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
(2) School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
Present addresses: 3 Hacquetova 17, 1000 Ljubljana,
(4) Wine research centre, University of Nova Gorica, Glavni trg 8, 5271 Vipava, Slovenia
(5) Montpellier SupAgro‐IHEV‐BE, 2 Place Pierre Viala, 34060 Montpellier, France

Contact the author

Keywords

Grapevine, Australia, Shiraz, warm and temperate climates, sequential harvests, fruit and wine composition, sensory analyses

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape.

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

Wine tannins: What place for grape seed?

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability.

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.