GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

Abstract

Context and purpose of the study ‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change. Visualization methods such as the optical vulnerability technique (Brodribb et al. 2016) has been shown to be a reliable and accessible approach to observe the spread of embolism in dehydrating leaves (Hochberg et al. 2017; Lamarque et al. 2018). In this study we use the optical technique to examine the development of leaf embolism in three grapevine cultivars as a method to characterize their drought‐tolerance strategy.

Material and methods ‐Potted plants of Grenache, Semillon and Syrah were grown outdoors in 2018 under well‐watered conditions. Leaf embolism formation and spread was evaluated in four individuals per genotype by monitoring changes in light transmission through the xylem after the irrigation was cutted‐off. For each plant, a mature leaf was placed on a scanner and imaged every 5 minutes until complete desiccation. Simultaneous measurements of stem water potential (Ystem) were registered using psychrometers properly installed on the main stem. The accuracy of the psychrometers was evaluated by measuring the leaf water potential in adjacent leaves previously bagged with aluminum foil using a Scholander pressure bomb. The stack of images obtained were analyzed using the ImageJ software as described in Lamarque et al. (2018). The percentage of embolism (%emb) was calculated as the cumulative number of embolised pixels normalized to the total number of embolised pixels throughout the dehydration. Finally, the %emb was represented as a function of Ystem and different events were colored using a continuous scale respective to their time of appearance.

Results ‐Embolism formation and spread in the leaves were detected at different times for each cultivar since the beginning of drought. While Grenache showed the first embolism event at around 48 h of desiccation (‐0.48 MPa), Semillon showed its first event after 72 h (‐1.5 MPa). Syrah plants were placed in between the other two genotypes showing the first embolisms at ‐0.68 MPa. The vulnerability curves (%emb vs Ystem) constructed from the data obtained followed a sigmoidal function for all genotypes and showed a great variability between individuals. In spite of this, the time and water potentials at which the main embolisms occurred was significantly different between cultivars where Grenache showed an early cavitation (P50 at ‐1.43 MPa), followed by Syrah (P50 at ‐1.65 MPa) and Semillon (P50 at ‐2.08 Mpa). The optical technique tested in this study revealed genotype differences in the temporal appearance of leaf embolism suggesting a different strategy to tolerate dehydration. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Silvina DAYER (1), Régis BURLETT (2), Laurent LAMARQUE2, Sylvain DELZON2, Gregory GAMBETTA1*

(1) Institut des Sciences de la Vigne et du Vin, Écophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, 210 Chemin de Leysotte, F-33140 Villenave-d’Ornon, France
(2) Biodiversité Gènes et Communautés, Institut National de la Recherche Agronomique (INRA), Université Bordeaux, 33610 Cestas, France

Contact the author

Keywords

 Embolism, drought, xylem cavitation, vessels, grapevine

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].

Untargeted metabolomics analyses to study taste-active compounds released during post-fermentation maceration of wine

The sensory properties of a wine depends on its colours, aromas and flavors. Regarding red wines, the gustatory part consists of the acid, bitter and sweet tastes

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Approaches for estimating the age of old vineyards in Campo de Borja

Determining the age of a vineyard is essential for understanding its influence on wine quality and characteristics.

French regulations related to vineyard spraying and examples of devices developed in France and around the world to limit the risks of point-source pollution

Managing pests in vineyards presents a major challenge for winegrowers, who are seeking effective solutions to control diseases and pests.