terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Abstract

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci. A highly aggressive P. viticola isolate (NW-10/16) was employed for the infection studies. Additionally, fatty acid modulation, by gas chromatography, during infection was monitored, by gas chromatography. The work suggests that lipid metabolism and lipid signalling events is genotype-dependent. Notably, Regent displayed specific modulation of genes associated with lipid signalling and fatty acids, possibly linked to the Rpv3 loci. In contrast, Sauvignac, carrying the Rpv12 locus dominantly, may activate alternative defence pathways rather than lipid signalling.

Acknowledgements: The present work was funded by FCT-Portugal: PhD fellowship, (GL: SFRH/BD/145298/2019); Research Units and projects BioISI (UIDB/00006/2020), project (PTDC/BIA-BQM/28539/2017).

1)  Laureano G. et al. (2018) The interplay between membrane lipids and phospholipase A family members in grapevine resistance against Plasmopara viticola. Sci Rep 8, 14538, DOI 10.1038/s41598-018-32559-z

2)  Laureano G. et al. (2023) Grapevine-Associated Lipid Signalling Is Specifically Activated in an Rpv3 Background in Response to an Aggressive P. viticola Pathovar. Cells, 12(3), 394, DOI 10.3390/cells12030394

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Gonçalo Laureano1,2*, Ana Rita Matos1, Andreia Figueiredo1,2

1Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
2Grapevine Pathogen Systems Lab, BioISI, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal

Contact the author*

Keywords

lipid signalling, pathogen interaction, defence, fatty acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.