Macrowine 2021
IVES 9 IVES Conference Series 9 Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Abstract

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept. Monastrell red wines, predominant varietal wines from the Southern of Spain, were elaborated with grapes from four different terroirs: Cañada Judío, Albatana, Bullas and Montealegre. Climate and soil data from different terroirs were gathered to properly distinguish them. Oligosaccharide fractions from wines were isolated, after removal of phenolic compounds, by high resolution size-exclusion chromatography. The glycosyl–linkages composition was determined by GC–MS of the partially methylated alditol acetates. Results show differences in the glycosyl–linkages composition of oligosaccharides from wines, according to their terroir. The molar percentage of glucose, rhamnose, arabinose, xylose and mannose residues exhibit marked differences depending on the terroir. The ratio of the terminal to the branched residues for Cañada Judío, Albatana, Bullas and Montealegre oligosaccharides is, respectively, 0.75, 0.85, 0.99 and 0.89. Proportions of oligosaccharides families have been calculated from glycosyl-linkage data (3,4,5). Montealegre wine clearly presents the lowest relative molar percentage for the oligosaccharides from yeasts (the sum of OligoGlucans and OligoMannans) and also for OligoXyloGlucans, whereas Bullas wine exhibits by far the lowest release of OligoRhamnogalacturonans. OligoArabinans and OligoArabiGalactans type II also show differences according to the terroir. All these data were treated by PCA to permit a best understanding. The projections on the first axis show obvious separation of Montealegre, whereas a clear separation of Albatana is observed in the projections on the second axis. The first and second principal components represent, respectively, 69% and 19% of the variability for samples. In summary, our results suggest the impact of “terroir” on the structure and the composition of wine oligosaccharide fraction, which could affect their physicochemical and sensory properties.

1.Quijada-Morín et al. (2014). Food Chem. 154, 44–51. 2.Boulet et al. (2016). Food Chem. 190, 357–363 3.Ducasse et al. (2011). J Agric Food Chem. 59, 6558–6567. 4.Ballou (1982). In Strathern, Jones & Broach (Eds.), Metabolism and gene expression (335–360), NY. 5.Fry et al. (1983). Plant Physiol. 89, 1–3.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rafael Apolinar-Valiente*, Encarna Gómez-Plaza, José María Ros-García, Pascale Williams, Thierry Doco

*INRA Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.