Macrowine 2021
IVES 9 IVES Conference Series 9 Application of high power ultrasounds during red wine vinification

Application of high power ultrasounds during red wine vinification

Abstract

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique. During traditional winemaking, grapes are crushed and skin macerated for several days, with pumps over to facilitate the color extraction. To increase this extraction, some chemical (maceration enzymes) or physical technologies (thermovinification, criomaceration, flash-expansion) can be applied. In this work, a new methodology has being tested. This methodology consists in the application of high power ultrasounds to crushed grapes to increase the extraction of phenolic compounds. Ultrasound is a non-thermal processing method, which is already widely used in the food industry due to its mild application but significant effects on the product. The mechanical activity of the ultrasound breaks the cell wall mechanically by the cavitation shear forces, and facilitates the transfer of phenolic and other compounds from the cell into the must. Also, the particle size reduction by the ultrasonic cavitation increases the surface area in contact between the solid and the liquid phase. High power ultrasounds have been used in the vinification of Monastrell grapes. Crushed grapes were treated with ultrasound, considering as variables the time the ultrasounds were applied to the crushed grapes (two different times were applied) and the duration of the fermentative skin maceration period (3, 6 or 8 days) and the results were compared with a control vinification, where grapes were not subjected to any treatment and were skin macerated during 8 days. The wine chromatic characteristics (determined spectrophotometrically) and the individual phenolic compounds (anthocyanins and tannins, determined by HPLC) were followed during all the maceration period, at the end of alcoholic fermentation and after three months in bottle. The wines made with ultrasound treated grapes presented differences with control wine, especially as regard total phenol content and tannin content, the wines with three days of maceration time presenting similar concentration of anthocyanins and twice the concentration of tannins than control wines with 8 days of maceration time. Other possible advantages of wines made with ultrasound treated grapes will be discussed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Encarna Gómez-Plaza*, Ana Andres-Grau, Ana Bautista-Ortín, Juan Iniesta, Ricardo Jurado, Salvador Terrades

*University of Murcia

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.