Macrowine 2021
IVES 9 IVES Conference Series 9 Using elicitors in different grape varieties. Effect over their phenolic composition

Using elicitors in different grape varieties. Effect over their phenolic composition

Abstract

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known. They are responsible for the color of wines, especially anthocyanins (colored pigments responsible for the chromatic characteristics of red wines), tannins (responsible for the long-term stability of red wine color), and flavonols (compounds that may influence wine color through copigmentation). Moreover, they influence on other organoleptic properties such as astringency, bitterness, and body (Ruiz-García et al. 2012). Several techniques have been applied to improve the phenolic content of grapes. Leaving aside genetically modified plants, which are not allowed by the regulations of most countries, the most common techniques are related to cultural practices: pruning (González-Neves et al. 2002, Pérez-Lamela et al. 2007), cluster thinning (Fanzone et al. 2012, Soufleros et al. 2011), leaf removal (Gatti et al. 2012), and deficit irrigation (De la Hera et al. 2005, Koundouras et al. 2009). Another, more recent, technique for the same purpose is the use of elicitors, which are growing in interests. Elicitors are phytochemicals that do not kill pathogens themselves but trigger plant mechanisms that improve pathogen resistance, among them an increase in the levels of phenolic compounds (Vitallini et al. 2011), which are not only toxic to pathogens but also the precursors of disease-resistant material such as lignin (Pan and Liu 2011). This observed increase in phenolic compounds after the application of some elicitors justifies the interest in their application in fruits and vegetables. In our study, the effect of the application of benzhothiadiazol (BTH) and methyl jasmonate at veraison on the phenolic composition of grapes from three varieties (Monastrell, Cabernet Sauvignon and Merlot) was studied at harvest and after that, in wines at the end of alcoholic fermentation.The results showed that the effects of the treatments differed in the three varieties for the several phenolic compounds.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rocio Gil

*IMIDA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.