GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Grape phylloxera meets drought: increased risk for vines under climate change?

Grape phylloxera meets drought: increased risk for vines under climate change?

Abstract

Context and purpose of the study ‐ Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities, with particular regard to viticulture. Moreover, in the last decades the wine‐making industry is further threatened by new outbreaks of grape phylloxera (Daktulosphaira vitifoliae Fitch) which have been reported worldwide. Phylloxera is a galling aphid native to eastern North America that targets grapevines as its single host and source of nutrition. Knowledge on how the aphid affects the whole‐plant physiological functions is limited, in particular when the phylloxera attack is accompanied by drought stress. In the light of prolonged drought periods forecasted for the near future in many viticultural regions, it is fundamental to understand and predict eventual negative cumulative effects of a combined biotic‐abiotic stress.

Material and methods ‐ In the present study we monitored water and carbon metabolism, gas exchange and photosystem functionality of grapevines subjected to drought stress (D) and/or phylloxera infestation (P). The experiment was carried out in pots using Riesling grafted on Teleki 5C (RR) and own‐ rooted Teleki 5C (5C, rootstock). P vines were root inoculated with phylloxera eggs collected from a field population. A subset of plants was subjected to an 8 week‐long moderate drought stress (PD), while the others were maintained in well‐watered conditions (PI). Non‐inoculated control plants were also included in the trial for both irrigated (CI) and drought stress (CD) conditions. Non‐structural carbohydrates (NSC) were measured in young leaves developed under the treatments. Differences in root infestation (presence of nodosities) were also investigated among experimental treatments.

Results ‐ Drought stress had a significant impact on the plants gas exchange leading to the reduction of NSC in the leaves. On the other hand, infestation with phylloxera did not induce notable shifts in physiological traits with the exception of a marked increase of leaf surface temperature recorded in RR (+1°C recorded in P plants compared to C). The insect induced starch depletion and enhanced glucose synthesis in the leaves. The inoculation efficiency was higher in D plants compared to I ones, suggesting that events of water shortage favor the insect spread. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Tadeja SAVI, Almudena GARCÍA GONZÁLEZ, Jose Carlos HERRERA, Miroslaw WIERZYK, Astrid FORNECK

University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Department of Crop Sciences, Konrad Lorenz Straße 24, A-3430 Tulln.

Contact the author

Keywords

Drought stress, Gas exchange, Carbon metabolism, Biotic stress, Riesling

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Epigenetics: an innovative lever for grapevine breeding in times of climatic changes

In this video recording of the IVES science meeting 2025, Margot Berger (INRAE, UMR1287 EGFV, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France) speaks about epigenetics as an innovative lever for grapevine breeding in times of climatic changes. This presentation is based on an original article accessible for free on OENO One.

Characterizing chemical influences of smoke on wine via novel application of 13c-labelled smoke

Smoke impact is an ongoing and growing issue for vintners across the globe, with the west coast of the U.S. and Australia being two of the largest wine industries impacted. Wine has shown to be especially sensitive to smoke exposure, often acquiring off-flavor sensory characteristics, such as “burnt rubber”, “ashy”, or other medicinal off-flavors.1 While several studies have examined the chemical composition of smoke influences on wine, some studies disagree on what compounds are having the largest impact on smell and flavor.2 This study is designed as a bottom-up approach to inventory the chemical compounds derived from smoke from a grassland-like fire that are potentially influencing wine chemical composition.

On-the-go resistivity sensors employment to support soil survey for precision viticulture

There is an increasing need in agriculture to adopt site-specific management (precision farming) because of economic and environmental pressures. Geophysical on-the-go sensors, such as the ARP (Automatic Resistivity Profiling) system, can effectively support soil survey by optimizing sampling density according to the spatial variability of apparent electrical resistivity (ER).

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition

The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland

Aims: Agroscope investigated the efficiency of nitrogen fertilization via foliar urea application at veraison with the aim of raising the YAN (yeast assimilable nitrogen) content in the musts. The observations were conducted on the white grapevine cultivar Doral (Chasselas x Chardonnay) in several pedoclimatic conditions of the Leman wine region, Switzerland, in the years 2012 and 2013. Knowing that the YAN in must plays a key role in wine quality, the aim was finding the main parameters affecting the final YAN level in order to better control them.