GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Untangling belowground response of grapevines to cover crop competition

Untangling belowground response of grapevines to cover crop competition

Abstract

Context and purpose of the study ‐ Cover crops are planted in vineyards for multiple benefits including soil conservation, weed management, regulation of grapevine vegetative growth, and improved fruit quality. In humid climates where inter‐row cover crops are standard management, we evaluated under‐ vine cover crops for beneficial reductions in vegetative growth. Several factors affect the impact of under‐vine cover crops on vine growth and productivity, including seasonal resource availability, vine age, and rootstock. To better understand these factors, we examined belowground processes that might clarify mechanisms of resource competition between grapevines and cover crops.

Material and methods ‐ Field examinations of mature vinifera and young inter‐specific hybrid grapevines grafted on two rootstocks varying in vigor, Riparia (Vitis riparia) and 101‐14 Mgt (Vitis riparia x Vitis rupestris), were conducted at three humid, eastern US vineyards. Both destructive (soil coring) and non‐destructive (minirhizotron technique) methods were used for root observations and analysis.

Results ‐ Roots of young and mature vines coped with under‐vine cover crop competition by avoiding shallow soil regions mainly colonized by cover crops roots, suggesting complementary use of water and nutrients. In mature vines, cover crop competition also induced shorter lifespan of grapevine roots, but did not affect root morphological traits, such as specific root length, diameter, mycorrhizal fungal colonization, and root branching. In contrast, young grapevine root systems responded to competition by increasing specific root length and decreasing absorptive root diameter, regardless of the rootstock. Although rootstocks displayed a similar belowground response, young vines grafted on the low‐vigor rootstock exhibited less growth reduction during the first year suggesting that tolerance of cover crop competition may be rootstock dependent. Overall, young grapevines growing with cover crops tended to have greater reductions in growth compared to mature vines, suggesting that vines acclimate to competition over multiple years.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Michela CENTINARI (1), David EISSENSTAT (2), Suzanne FLEISHMAN (1,2), Anne KLODD (1,2,4), Taryn BAUERLE (5)

(1) Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
(2) Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
(4) Current affiliation: University of Minnesota, Andover, MN, USA
(5) School of Integrative Plant Science, Cornell University, Ithaca, NY, USA

Contact the author

Keywords

Cover crops, plasticity, root distribution, Vitis

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.

Legal and economic evolution of the Japanese wine industry in the 21st century

Historically bounded by strict regulations with a focus on taxation since the 19th century, the japanese wine industry stands at a crossroads in the 21st century, necessitated by alignment with international standards and opening towards global markets.

Australia’s Wine Future: A Climate Atlas

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Aromatic profile of Savatiano Greek Grape Variety as affected by various terroirs in the PGI zone of Attica.

Regionality, frequently called terroir, is often used to market wines from different locations. Savatiano (Vitis Vinifera L.), is the dominant indigenous variety of the Mesogeia – Attiki region, reaching a percentage of 70% of the total vine cultivation, and being the most widely planted variety in Greece. In this context, this research focuses on the evaluation of the impact of different terroirs within the PGI Attiki zone on the aromatic profile of Savatiano.