WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Brettanomyces bruxellensis, born to live

Brettanomyces bruxellensis, born to live

Abstract

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

The capacity of the yeast to colonize supports was demonstrated, notably in wine. When biofilms developed on stainless steel chips were inoculated in wine, a considerable cell release from chip into wine was induced, followed by a growth of planktonic cells able to produce wine spoilage metabolites, such as 4-ethylphenol.

Besides the ability to form biofilm, B. bruxellensis is also able to display different cell morphologies, as demonstrated by microscopic observations. First, filaments were observed, playing a role in the structure of biofilm. For the first time, chlamydospore-like was described in this species, probably a potential additional resistance strategy. In addition, a polymorphism of vegetative cells was revealed. Using image analysis, we have shown that strains having different genotyping presented different morphology. Based on this link, a deep learning method was adapted to predict the genetic group of a strain from a simple microscopic observation.

Taken together, all of these features and strategies lead B. bruxellensis to persist in environment and to contaminate wine. Moreover, morphology of vegetative cells could be newly considered as indicator of a strain resistance capacity since the sensitivity to SO2 depend on the strain genetic group.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Manon LEBLEUX, Emmanuel Denimal, Hany ABDO, Christian COELHO, Louise Basmaciyan, Hervé Alexandre, Stéphanie Weidmann, Sandrine ROUSSEAUX

Presenting author

Manon LEBLEUX – Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire VAlMiS-IUVV

Agrosup Dijon, Direction Scientifique, Appui A La Recherche, 26 Boulevard Docteur Petitjean, Dijon, F-21000, France, Laboratoire Valmis-IUVV | Université Bourgogne Franche-Comté, Agrosup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire PCAV | Université Bourgogne Franche-Comté, Agrosup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire Valmis-IUVV

Contact the author

Keywords

Brettanomyces bruxellensis – wine spoilage – biofilm – morphology – deep learning

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Assessing bunch architecture for grapevine yield forecasting by image analysis 

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages.

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.

“Vinhos de mesa” et oenophilie : quand les caractéristiques organoleptiques des cépages américains empêchent l’intégration des consommateurs à l’univers de l’appréciation esthétique

Au Brésil, 80 % du vignoble national et 90 % du vignoble de l’État du Rio Grande do Sul (principale région productrice de vins dans le pays) sont plantés avec des cépages issus de vitis labrusca ou de cépages hybrides (DEBASTIANI, 2015). Une partie de cette production est utilisée pour la préparation de jus de raisin et de concentrés de moût ou de pulpe de raisin. Le restant est consacré à

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.