Macrowine 2021
IVES 9 IVES Conference Series 9 Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Abstract

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate. They were present in wines with a single or both enantiomeric forms in various ratios, according to age. On the contrary of most of the ethyl esters, produced during alcoholic fermentation, these esters levels increased gradually over time and then stabilize after about four to five years. For those present under two enantiomeric forms, ratios were modified during ageing. For each ester of this type, the most powerful enantiomer, from an olfactive point of view, was found in relatively small amount at the end of alcoholic fermentation and was then particularly accumulated. The sensorial role of these chiral compounds has been established, revealing their role as natural enhancers of black-berry, red-berry and fresh-fruit aromas. Our data corroborate and specify those of Lytra et al. [2] and Pineau et al. [3] highlighting the impact of substituted esters in fruity expression of red wines. Considering their dynamic evolution of their concentration, these compounds seem to be produced on one hand during alcoholic fermentation by Saccharomyces cerevisiae from amino acids and on the other hand during aging by a chemical esterification from the corresponding substituted acids as previously suggested by Diaz-Maroto et al. [4]. In order to determine the precursors of these esters and to consider synthesis pathways, we have developed a method aimed at quantifying their corresponding substituted acids (2-hydroxy-4-methylpentanoic acid, 2-methylbutanoic acid, and 3-hydroxybutanoic acid) including, if applicable, the enantiomeric forms. Thanks to the quantification of these compounds, the chemical formation of substituted esters during aging as well as the mechanisms of formation of these compounds during alcoholic and malolactic fermentation was described.

References: 1. Guth, H. (1997) J. Agric. Food Chem.45:3027-3032. 2. Lytra, G., Tempere, S., Le Floch, A., de Revel, G., and Barbe, J.-C. (2013) J. Agric. Food Chem. 61:8504-8513. 3. Pineau, B., Barbe, J.-C., Van Leeuwen, C., Dubourdieu, D. (2009) J. Agric. Food Chem. 57:3702-3708. 4. Diaz-Maroto, M.C., Schneider, R., Baumes, R. (2005) J. Agric. Food Chem. 53: 3503-3509.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Georgia Lytra*, Jean-Christophe Barbe, Margaux Cameleyre, Sophie Tempère

*Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.